LPS stimulates monocytes/macrophages through TLR4, resulting in the activation of a series of signaling events that potentiate the production of inflammatory mediators. Recent reports indicated that the inflammatory response to LPS is diminished by PI3K, through the activation of the serine/threonine kinase Akt. SHIP is an inositol phosphatase that can reverse the activation events initiated by PI3K, including the activation of Akt. However, it is not known whether SHIP is involved in TLR4 signaling. In this study, we demonstrate that LPS stimulation of Raw 264.7 mouse macrophage cells induces the association of SHIP with lipid rafts, along with IL-1R-associated kinase. In addition, SHIP is tyrosine phosphorylated upon LPS stimulation. Transient transfection experiments analyzing the function of SHIP indicated that overexpression of a wild-type SHIP, but not the SHIP Src homology 2 domain-lacking catalytic activity, up-regulates NF-κB-dependent gene transcription in response to LPS stimulation. These results suggest that SHIP positively regulates LPS-induced activation of Raw 264.7 cells. To test the validity of these observations in primary macrophages, LPS-induced events were compared in bone marrow macrophages derived from SHIP+/+ and SHIP−/− mice. Results indicated that LPS-induced MAPK phosphorylation is enhanced in SHIP+/+ cells, whereas Akt phosphorylation is enhanced in SHIP−/− cells compared with SHIP+/+ cells. Finally, LPS-induced TNF-α and IL-6 production was significantly lower in SHIP−/− bone marrow-derived macrophages. These results are the first to demonstrate a role for SHIP in TLR4 signaling, and propose that SHIP is a positive regulator of LPS-induced inflammation.
While mitogen-activated protein kinase (MAPK) activation has been implicated in the pathogenesis of various glomerular diseases, including nephrotic syndrome (NS), its specific role in podocyte injury is not known. We hypothesized that MK-2, a downstream substrate of p38 MAPK, mediates the adverse effects of this pathway and that inhibition of MK-2 would protect podocytes from NS-related injury. Using cultured podocytes, we analyzed 1) the roles of MK-2 and p38 MAPK in puromycin aminonucleoside (PAN)-induced podocyte injury; 2) the ability of specific MK-2 and p38 MAPK inhibitors to protect podocytes against injury; 3) the role of serum albumin, known to induce podocyte injury, in activating p38 MAPK/MK-2 signaling; and 4) the role of p38 MAPK/MK-2 signaling in the expression of Cox-2, an enzyme associated with podocyte injury. Treatment with protein kinase inhibitors specific for both MK-2 (C23, a pyrrolopyridine-type compound) or p38 MAPK (SB203580) reduced PAN-induced podocyte injury and actin cytoskeletal disruption. Both inhibitors reduced baseline podocyte p38 MAPK/MK-2 signaling, as measured by the degree of phosphorylation of HSPB1, a downstream substrate of MK-2, but exhibited disparate effects on upstream signaling. Serum albumin activated p38 MAPK/MK-2 signaling and induced Cox-2 expression, and these responses were blocked by both inhibitors. Given the critical importance of podocyte injury to both NS and other progressive glomerular diseases, these data suggest an important role for p38 MAPK/MK-2 signaling in podocyte injury and identify MK-2 inhibition as a promising potential therapeutic strategy to protect podocytes in various glomerular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.