Localization is one of the fundamental problems in wireless sensor networks (WSNs), since locations of the sensor nodes are critical to both network operations and most application level tasks. Although the GPS based localization schemes can be used to determine node locations within a few meters, the cost of GPS devices and non-availability of GPS signals in confined environments prevent their use in large scale sensor networks. There exists an extensive body of research that aims at obtaining locations as well as spatial relations of nodes in WSNs without requiring specialized hardware and/or employing only a limited number of anchors that are aware of their own locations. In this paper, we present a comprehensive survey on sensor localization in WSNs covering motivations, problem formulations, solution approaches and performance summary. Future research issues will also be discussed.
The exponential growth in the number of scientific papers makes it increasingly difficult for researchers to keep track of all the publications relevant to their work. Consequently, the attention that can be devoted to individual papers, measured by their citation counts, is bound to decay rapidly. In this work we make a thorough study of the life-cycle of papers in different disciplines. Typically, the citation rate of a paper increases up to a few years after its publication, reaches a peak and then decreases rapidly. This decay can be described by an exponential or a power law behavior, as in ultradiffusive processes, with exponential fitting better than power law for the majority of cases. The decay is also becoming faster over the years, signaling that nowadays papers are forgotten more quickly. However, when time is counted in terms of the number of published papers, the rate of decay of citations is fairly independent of the period considered. This indicates that the attention of scholars depends on the number of published items, and not on real time.
Centrality is an important notion in network analysis and is used to measure the degree to which network structure contributes to the importance of a node in a network. While many different centrality measures exist, most of them apply to static networks. Most networks, on the other hand, are dynamic in nature, evolving over time through the addition or deletion of nodes and edges. A popular approach to analyzing such networks represents them by a static network that aggregates all edges observed over some time period. This approach, however, under or overestimates centrality of some nodes. We address this problem by introducing a novel centrality metric for dynamic network analysis. This metric exploits an intuition that in order for one node in a dynamic network to influence another over some period of time, there must exist a path that connects the source and destination nodes through intermediaries at different times. We demonstrate on an example network that the proposed metric leads to a very different ranking than analysis of an equivalent static network. We use dynamic centrality to study a dynamic citations network and contrast results to those reached by static network analysis.
Social networks have emerged as a critical factor in information dissemination, search, marketing, expertise and influence discovery, and potentially an important tool for mobilizing people. Social media has made social networks ubiquitous, and also given researchers access to massive quantities of data for empirical analysis. These data sets offer a rich source of evidence for studying dynamics of individual and group behavior, the structure of networks and global patterns of the flow of information on them. However, in most previous studies, the structure of the underlying networks was not directly visible but had to be inferred from the flow of information from one individual to another. As a result, we do not yet understand dynamics of information spread on networks or how the structure of the network affects it. We address this gap by analyzing data from two popular social news sites. Specifically, we extract social networks of active users on Digg and Twitter, and track how interest in news stories spreads among them. We show that social networks play a crucial role in the spread of information on these sites, and that network structure affects dynamics of information flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.