In this study, we examined the distribution and metabolism of refined sesame oil lignans (sesamin and episesamin) in rat. For 8 wk rats were fed the diet including 0.5% (w/w) sesame lignans (sesamin and episesamin) with 5% (w/w) corn oil or eicosapentaenoic acid (EPA)-rich oil. The concentrations of sesamin and episesamin in rat liver after their administration for 8 wk were very low; both of them were less than 0.5 microgram/g liver. These were observed in both oil groups although the fatty acid compositions of dietary oils were completely different. No significant difference existed in lymphatic absorption between sesamin and episesamin. To investigate the distribution of sesamin and episesamin in rats, the concentrations of sesamin and episesamin were determined in tissues and serum within 24 h after administration to rats. Sesamin and episesamin may be, at first, incorporated into the liver and then transported to the other tissues (lung, heart, kidney, and brain). They are lost from the body within 24 h after administration. There was no significant difference in lymphatic absorption between sesamin and episesamin, but the amount of sesamin was significantly lower than that of episesamin in all tissues and serum. These results suggest that sesamin is absorbed in lymph the same as episesamin, but that sesamin is subsequently metabolized faster by the liver.
In this study, a new marine oil that contains 45% docosahexaenoic acid (DHA, 22:6n-3) and 13% docosapentaenoic acid (DPA, 22:5n-6) was administered to rats. The metabolism and distribution of DPA in rats was investigated. In experiment 1, the effects of DHA and n-6 fatty acids (linoleic acid, LA; arachidonic acid, AA; and DPA) on AA contents were investigated in vivo. LA group: LA 25%, DHA 30%; LA-DPA group: LA 15%, DPA 10%, DHA 35%; LA-AA-DPA group: LA 10%, AA 5%, DPA 10%, DHA 35% were administered to rats for 4 wk. In the liver, the AA content in the LA-DPA and LA-AA-DPA groups was significantly higher than in the LA group. The decreased AA contents in the LA group might be caused by DHA administration. Although DHA also was administered in the LA-DPA and LA-AA-DPA groups, the AA contents in these two groups did not decrease. These results suggested that DPA retroconverted to AA, blunting the decrease in AA content caused by DHA administration. To conduct a detailed investigation on DPA metabolism and its relation with AA and DHA, rat hepatocytes were cultured with purified DPA and DHA for 24 h. We discovered the retroconversion of DPA to AA occurred only when AA content was decreased by a high DHA administration; it did not occur when AA content was maintained at a normal level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.