Background
Human adenovirus (HAdV) infection can cause a variety of diseases. It is a major pathogen of pediatric acute respiratory tract infections (ARIs) and can be life-threatening in younger children. We described the epidemiology and subtypes shifting of HAdV among children with ARI in Guangzhou, China.
Methods
We conducted a retrospective study of 161,079 children diagnosed with acute respiratory illness at the Guangzhou Women and Children’s Medical Center between 2010 and 2021. HAdV specimens were detected by real-time PCR and the hexon gene was used for phylogenetic analysis.
Results
Before the COVID-19 outbreak in Guangzhou, the annual frequency of adenovirus infection detected during this period ranged from 3.92% to 13.58%, with an epidemic peak every four to five years. HAdV demonstrated a clear seasonal distribution, with the lowest positivity in March and peaking during summer (July or August) every year. A significant increase in HAdV cases was recorded for 2018 and 2019, which coincided with a shift in the dominant HAdV subtype from HAdV-3 to HAdV-7. The latter was associated with a more severe disease compared to HAdV-3. The average mortality proportion for children infected with HAdV from 2016 to 2019 was 0.38% but increased to 20% in severe cases. After COVID-19 emerged, HAdV cases dropped to 2.68%, suggesting that non-pharmaceutical interventions probably reduced the transmission of HAdV in the community.
Conclusion
Our study provides the foundation for the understanding of the epidemiology of HAdV and its associated risks in children in Southern China.
The efficacy and therapeutic mechanisms of continuous renal replacement therapy (CRRT) for improvement of oxygenation in acute respiratory distress syndrome (ARDS) remain controversial. These questions were addressed by retrospective analysis of severe ARDS patients admitted to the pediatric intensive care unit of our hospital from 2009 to 2015 who received high-volume continuous veno-venous hemofiltration during mechanical ventilation. There was a significant improvement in partial oxygen pressure/fraction of inspired oxygen (PaO2/FiO2) 24 hours after CRRT onset compared with baseline (median change = 51.5; range = −19 to 450.5; P < .001) as well as decreases in FiO2, peak inspiratory pressure, positive end-expiratory pressure, and mean airway pressure (P < .05). The majority of patients had a negative fluid balance after 24 hours of CRRT. White blood cell (WBC) count decreased in the subgroup with high baseline WBC count (P < .05). PaO2/FiO2 was higher in ARDS patients with extrapulmonary etiology than in those with pulmonary etiology (P < .05). Improvement in oxygenation is likely related to both restoration of fluid balance and clearance of inflammatory mediators.
We implemented 2-D DIGE technology on proteins prepared from serum obtained from children with hand, foot and mouth disease (HFMD) and controls, to study the differentially expressed proteins in control and HFMD serum samples. Proteins found to be differentially expressed were identified with matrix-assisted laser desorption/ionization time-of-flight/ time-of-flight mass spectrometry (MALDI-TOF/TOF MS) analysis. We identified 30 proteins from mild HFMD samples and 39 proteins from severe HFMD samples, compared with the normal controls. 25 proteins among them (14 up-regulated and 11 down-regulated proteins) are found in both HFMD groups. Classification analysis and protein-protein interaction map showed that they associate with multiple functional groups, including transporter activity and atalytic activity. These findings build up a comprehensive profile of the HFMD proteome and provide a useful basis for further analysis of the pathogenic mechanism and the regulatory network of HFMD.
BackgroundRecent studies have proved that autophagy dysfunction in proinflammatory cells is involved in tissue damage and an excessive inflammatory response in sepsis. In the present study, we identified that the human antimicrobial peptide LL-37 facilitates resistance to DNase II-induced mitochondrial DNA (mtDNA) degradation and subsequent autophagy.Material/MethodsWe found higher serum levels of LL-37 in patients with severe sepsis compared to that in patients with mild sepsis. Neutrophils isolated from mice with sepsis after treatment with Cramp-mtDNA produced an excess of proinflammatory cytokines, including IL-1β, IL-6, IL-8, MMP-8, and TNF-α. Cramp-mtDNA in the lung samples from model animals with sepsis was detected by immunohistochemical staining.ResultsExogenous delivery of Cramp-mtDNA complex significantly exacerbated lung inflammation but the antibody against Cramp-mtDNA attenuated the excessive inflammatory response in LPS-induced acute lung injury. The expression of proinflammatory cytokines in lungs was upregulated and downregulated after treatment with the complex and antibody, respectively. LC-3 expression in 16HBE cells increased after LPS induction, irrespective of stimulation with LL-37.ConclusionsThese data show that LL-37 treatment worsens local inflammation in sepsis-induced acute lung injury by preventing mtDNA degradation-induced autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.