A stable adaptive control scheme for multi-point mooring system (MPMS) with uncertain dynamics is proposed in this paper. The control scheme is designed by a hybrid controller based on RBF (Radial Basis Function) NN (Neural Network) and SMC (Sliding Mode Control), which learns the MPMS dynamic changes, and the compensation of external disturbances is realized through adaptive RBFNN control. Meanwhile the RBF-SMC control parameters are adapted by the Lyapunov method to minimize squares dynamic positioning (DP) error. The convergence of the hybrid controller is proved theoretically, and the proposed mooring control scheme is applied to the “Kantan3” mooring simulation system. Finally, the simulation results are compared with the traditional PID controller and standard RBF controller to demonstrate the effective mooring positioning performance of the control scheme for the MPMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.