Abstract. We introduce the notion of Linear Integer Secret-Sharing (LISS) schemes, and show constructions of such schemes for any access structure. We show that any LISS scheme can be used to build a secure distributed protocol for exponentiation in any group. This implies, for instance, distributed RSA protocols for arbitrary access structures and with arbitrary public exponents.
We present two universally composable and practical protocols by which a dealer can, verifiably and non-interactively, secret-share an integer among a set of players. Moreover, at small extra cost and using a distributed verifier proof, it can be shown in zero-knowledge that three shared integers a, b, c satisfy ab = c. This implies by known reductions non-interactive zero-knowledge proofs that a shared integer is in a given interval, or that one secret integer is larger than another. Such primitives are useful, e.g., for supplying inputs to a multiparty computation protocol, such as an auction or an election. The protocols use various setup assumptions, but do not require the random oracle model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.