Visualizing individual molecules with chemical recognition is a longstanding target in catalysis, molecular nanotechnology and biotechnology. Molecular vibrations provide a valuable 'fingerprint' for such identification. Vibrational spectroscopy based on tip-enhanced Raman scattering allows us to access the spectral signals of molecular species very efficiently via the strong localized plasmonic fields produced at the tip apex. However, the best spatial resolution of the tip-enhanced Raman scattering imaging is still limited to 3-15 nanometres, which is not adequate for resolving a single molecule chemically. Here we demonstrate Raman spectral imaging with spatial resolution below one nanometre, resolving the inner structure and surface configuration of a single molecule. This is achieved by spectrally matching the resonance of the nanocavity plasmon to the molecular vibronic transitions, particularly the downward transition responsible for the emission of Raman photons. This matching is made possible by the extremely precise tuning capability provided by scanning tunnelling microscopy. Experimental evidence suggests that the highly confined and broadband nature of the nanocavity plasmon field in the tunnelling gap is essential for ultrahigh-resolution imaging through the generation of an efficient double-resonance enhancement for both Raman excitation and Raman emission. Our technique not only allows for chemical imaging at the single-molecule level, but also offers a new way to study the optical processes and photochemistry of a single molecule.
The sensing of bioactive molecules based on photochemical techniques has become one of the fastest-growing scientific fields. Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for the detection of low-concentration molecules, including DNA, microRNA, proteins, blood, and bacteria; single-cell detection and identification; bioimaging; and disease diagnosis, providing abundant structural information for biological analytes. One rapidly developing field of SERS biosensor design is the use of carbon-based nanomaterials as substrate materials, such as zero-dimensional carbon quantum dots, one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide (GO) and three-dimensional spatial carbon nanomaterials or carbon-based core-shell nanostructures. In this review, we describe the recent developments in SERS biosensors, in particular carbon-based SERS, for the detection of bioactive molecules. We systematically survey recent developments in carbon nanomaterial-based SERS biosensors, focusing on fundamental principles for carbon-based materials for SERS biosensor design, fabrication, and operation, and provide insights into their rapidly growing future potential in the fields of biomedical and biological engineering, in situ analysis, quantitative analysis, and flexible photoelectric functional materials. As such, this review can play the role of a roadmap to guide researchers toward concepts that can be used in the design of next-generation SERS biosensors while also highlighting current advancements in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.