Treatment of rodents after stroke with bone marrow stromal cells (BMSCs) improves functional outcome. However, the mechanisms underlying this benefit have not been ascertained. This study focused on the contribution of neurotrophic and growth factors produced by BMSCs to therapeutic benefit. Rats were subjected to middle cerebral artery occlusion and the ischemic brain extract supernatant was collected to prepare the conditioned medium. The counterpart normal brain extract from non-ischemic rats was employed as the experimental control. Using microarray assay, we measured the changes of the neurotrophin associated gene expression profile in BMSCs cultured in different media. Furthermore, real-time RT-PCR and fluorescent immunocytochemistry were utilized to validate the gene changes. The morphology of BMSCs, cultured in the ischemic brain-conditioned medium for 12 h, was dramatically altered from a polygonal and flat appearance to a fibroblast-like long and thin cell appearance, compared to those in the normal brain-conditioned medium and the serum replacement medium. Forty-four neurotrophin-associated genes in BMSCs were identified by microarray assay under all three culture media. Twelve out of the 44 genes (7 neurotrophic and growth factor genes, 5 receptor genes) increased in BMSCs cultured in the ischemic brain-conditioned medium compared to the normal brain-conditioned medium. Real time RT-PCR and immunocytochemistry validated that the ischemic brain-conditioned medium significantly increased 6/7 neurotrophic and growth factor genes, compared with the normal brain-conditioned medium. These six genes consisted of fibroblast growth factor 2, insulin-like growth factor 1, vascular endothelial growth factor A, nerve growth factor beta, brain-derived neurotrophic factor and epidermal growth factor. Our results indicate that transplanted BMSCs may work as 'small molecular factories' by secreting neurotrophins, growth factors and other supportive substances after stroke, which may produce therapeutic benefits in the ischemic brain.
We investigated whether compensatory reinnervation in the corticospinal tract (CST) and the corticorubral tract (CRT) is enhanced by administration of bone marrow stromal cells (BMSCs) after experimental stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Phosphate-buffered saline (PBS, control, n=7) or 3 × 10 6 BMSCs in PBS (n=8) were injected into a tail vein at 1 day postischemia. The CST of the left sensorimotor cortices was labeled with DiI 2 days prior to MCAo. Functional recovery was measured. Rats were sacrificed at 28 days after MCAo. The brain and spinal cord were removed and processed for vibratome sections for laser-scanning confocal analysis and paraffin sections for immunohistochemistry. Normal rats (n=4) exhibited a predominantly unilateral pattern of innervation of CST and CRT axons. After stroke, bilateral innervation occurred through axonal sprouting of the uninjured CRT and CST. Administration of BMSCs significantly increased the axonal restructuring on the de-afferented red nucleus and the denervated spinal motoneurons (p<0.05). BMSC treatment also significantly increased synaptic proteins in the denervated motoneurons. These results were highly correlated with improved functional outcome after stroke (r>0.81, p<0.01). We conclude that the transplantation of BMSCs enhance axonal sprouting and rewiring into the denervated spinal cord which may facilitate functional recovery after focal cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.