Background Many studies have shown that structural variations (SVs) strongly impact human disease. As a common type of SV, insertions are usually associated with genetic diseases. Therefore, accurately detecting insertions is of great significance. Although many methods for detecting insertions have been proposed, these methods often generate some errors and miss some variants. Hence, accurately detecting insertions remains a challenging task. Results In this paper, we propose a method named INSnet to detect insertions using a deep learning network. First, INSnet divides the reference genome into continuous sub-regions and takes five features for each locus through alignments between long reads and the reference genome. Next, INSnet uses a depthwise separable convolutional network. The convolution operation extracts informative features through spatial information and channel information. INSnet uses two attention mechanisms, the convolutional block attention module (CBAM) and efficient channel attention (ECA) to extract key alignment features in each sub-region. In order to capture the relationship between adjacent subregions, INSnet uses a gated recurrent unit (GRU) network to further extract more important SV signatures. After predicting whether a sub-region contains an insertion through the previous steps, INSnet determines the precise site and length of the insertion. The source code is available from GitHub at https://github.com/eioyuou/INSnet. Conclusion Experimental results show that INSnet can achieve better performance than other methods in terms of F1 score on real datasets.
Dielectrophoresis (DEP) is a force applied to microparticles in nonuniform electric field. This study discusses the fabrication of the glassy carbon interdigitated microelectrode arrays using lithography process based on lithographic patterning and subsequent pyrolysis of negative SU-8 photoresist. Resulting high-resistance electrodes would have the regions of high electric field at the ends of microarray as demonstrated by simulation. The study demonstrates that combining the alternating current (AC) applied bias with the direct current (DC) offset allows the user to separate subpopulations of microparticulates and control the propulsion of microparticles to the high field areas such as the ends of the electrode array. The direction of the movement of the particles can be switched by changing the offset. The demonstrated novel integrated DEP separation and propulsion can be applied to various fields including in vitro diagnostics as well as to microassembly technologies.
The role and biological impact of structural variation (SV) are increasingly evident. Deletion accounts for 40% of SV and is an important type of SV. Therefore, it is of great significance to detect and genotype deletions. At present, high accurate long reads can be obtained as HiFi reads. And, through a combination of error-prone long reads and high accurate short reads, we can also get accurate long reads. These accurate long reads are helpful for detecting and genotyping SVs. However, due to the complexity of genome and alignment information, detecting and genotyping SVs remain a challenging task. Here, we propose LSnet, an approach for detecting and genotyping deletions with a deep learning network. Because of the ability of deep learning to learn complex features in labeled datasets, it is beneficial for detecting SV. First, LSnet divides the reference genome into continuous sub-regions. Based on the alignment between the sequencing data (the combination of error-prone long reads and short reads or HiFi reads) and the reference genome, LSnet extracts nine features for each sub-region, and these features are considered as signal of deletion. Second, LSnet uses a convolutional neural network and an attention mechanism to learn critical features in every sub-region. Next, in accordance with the relationship among the continuous sub-regions, LSnet uses a gated recurrent units (GRU) network to further extract more important deletion signatures. And a heuristic algorithm is present to determine the location and length of deletions. Experimental results show that LSnet outperforms other methods in terms of the F1 score. The source code is available from GitHub at https://github.com/eioyuou/LSnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.