Objective: This study sought to elucidate the underlying hemodynamic mechanisms involved in the longitudinal propagation of acute, type-B aortic dissections. Methods: Three-dimensional patient-specific aortic geometry was reconstructed from computed tomography images of 3 cases, followed by computational fluid dynamic analysis using finite-element analysis modeling. Three models were reconstructed; the normal-aortic model (from a healthy volunteer), the visceral-involvement model (from a patient whose visceral arteries were involved) and the progression model (from a patient whose visceral arteries were intact at admission). Wall pressure distribution was analyzed in all three models. Results: In the systolic phase of a cardiac cycle, the wall pressure dropped from the proximal to the distal aorta within the true lumen. This pressure gradient was observed in all three models. A milder pressure gradient was seen in the false lumen in the visceral-involvement model, whereas the pressure in the false lumen remained almost constant in the progression model. The dyssynchrony of the pressure gradients in the true and false lumens caused an imbalance in pressure between the two lumens. Conclusion: The interluminal pressure differential may be a contributing factor in the compression of the true lumen and the cleavage force of the aortic wall, leading to the longitudinal propagation of the dissection.
This study indicates that CBP may decrease the metastasis of esophageal carcinoma by inhibiting the activation of Src. CBP may be a potential tumor suppressor and targeting the CBP gene may be an alternative strategy for the development of therapies for esophageal carcinoma.
In order to study the influence of cooperative behavior in the evacuation process of subway station personnel, and considering the heterogeneity of evacuees, the heterogeneous cellular automata method is adopted to establish a human evacuation model of subway station under cooperative behavior based on the floor field model. In the research process, the evacuated persons are divided into two types, which are seeking cooperation and accepting cooperation. Then, the effects of different cooperative behavior probability ratios of seeking cooperative personnel on evacuation efficiency, evacuation process, and evacuation bottleneck are analyzed through simulation. The result shows that cooperative behavior can effectively improve evacuation efficiency of the subway station, but it is limited by cooperative probability and the proportion of people seeking cooperation; Cooperative behavior plays a role in the whole evacuation process, which is mainly reflected in the later stage of evacuation and will promote the gathering of evacuees. The higher the probability of cooperation, the shorter the evacuation bottleneck formation time, the duration, and overall evacuation time, which will help improve the emergency safety of subway stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.