Stem water content (StWC = volume of water : volume of stem) is an important physiological parameter for vascular plants. And a better understanding of StWC contributes to solving some research hotspots in forestry, such as drought resistance, cold resistance, precise irrigation, and health assessment. However, there are few noninvasive, in situ, real-time, safe, and low-cost methods for detecting StWC of woody plants. This article presents a novel sensor for noninvasive detection of in situ StWC based on standing wave ratio. Moreover, extensive experiments were conducted to analyze the performance of this sensor including sensitive distance, measuring range, influence factors, and measuring accuracy. The experimental results show that the sensitive distance of StWC sensor is approximately 53 mm in axial direction and 20 mm in radial direction with the measuring range from 0.01 to 1.00 cm3 cm-3. The combined effects of stem EC and temperature on sensor output are significant and it is necessary to correct the error caused by the two factors. Compared with the oven-drying method, StWC sensor has higher measuring accuracy than Testo 606-2 which is a sensor for measuring wood water content and its average error is less than 0.01 cm3 cm-3. In addition, StWC sensor performed very well on the crape myrtle with high sensitivity equal to 1022.1 mV (cm3 cm-3)-1 and measuring results also accorded with the diurnal dynamics of stem water content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.