Ras-related C3 botulinum toxin substrate 1 (rac1) has been implicated in tumor epithelial-mesenchymal transition (EMT); however, limited information is available regarding the role of rac1 in epithelial ovarian cancer (EOC). This study aimed to evaluate the correlation of rac1 expression with EMT and EOC prognosis. Rac1 protein levels of 150 EOC specimens were evaluated by immunohistochemical staining. Survival analysis was performed to determine the correlation between rac1 expression and survival. Cellular and molecular changes were also examined after rac1 in ovarian cancer cells was silenced in vitro and in vivo. The mechanism of rac1 on EMT was investigated by Western blot analysis. Rac1 was highly expressed in EOC. Rac1 overexpression was closely associated with advanced stage based on International Federation of Gynecology and Obstetrics, poor grade, serum Ca-125, and residual tumor size. Survival analyses demonstrated that patients with high rac1 expression levels were more susceptible to early tumor recurrence with very poor prognosis. This study revealed that rac1 downregulation decreased cell EMT and proliferation capability in vitro and in vivo. Rac1 expression possibly altered cell EMT by interacting with p21-activated kinase 1 and p38 mitogen-activated protein kinase signaling pathways. The present study showed that rac1 overexpression is associated with cell EMT and poor EOC prognosis. Rac1 possibly plays an important role in predicting EOC metastasis.
a b s t r a c tOncogenic activation of VEGF is found in various malignancies, including ovarian cancer. In this study, we investigate the role of microRNA (miRNA) in the regulation of VEGF in ovarian cancer. We find that miR-718 is expressed at low levels and inversely correlates with VEGF expression in ovarian cancer specimens. MiR-718 also directly targets and represses VEGF expression. In addition, miR-718 restoration inhibits ovarian cancer proliferation both in vitro and in vivo. Moreover, VEGF expression could reverse the effect of miR-718 on ovarian cancer by increasing the levels of phosphorylated AKT. These results suggest a new therapeutic strategy in ovarian cancer by restoring miR-718 expression, which is involved in VEGF regulation.
IntroductionNDC80 kinetochore complex component (NUF2) is upregulated and plays an important role in various human cancers. However, the function and mechanism of NUF2 in epithelial ovarian cancer (EOC) remain unclear.MethodsNUF2 expression was detected in EOC tissues and cell lines. The effects of NUF2 downregulation on cell proliferation, migration and invasion in EOC were analyzed by CCK-8 and Transwell assays. Meanwhile, the effect of NUF2 downregulation on tumor growth in vivo was determined by xenograft tumor models. The mechanisms by which NUF2 regulates EOC progression were detected by RNA sequencing and a series of in vitro assays.ResultsWe showed that NUF2 was significantly upregulated in EOC tissues and cell lines, and high NUF2 expression was associated with FIGO stage, pathological grade and poor EOC prognosis. NUF2 downregulation decreased cell proliferation, migration, invasion and tumor growth in nude mice. RNA sequencing studies showed that NUF2 knockdown inhibited several genes enriched in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT serine/threonine kinase (AKT) and mitogen-activated protein kinase (MAPK) signaling pathways. Erb-B2 receptor tyrosine kinase 3 (ERBB3) was the key factor involved in both of the above pathways. We found that ERBB3 silencing could inhibit EOC progression and repress activation of the PI3K-AKT and MAPK signaling pathways. Furthermore, the exogenous overexpression of ERBB3 partially reversed the inhibitory effects on EOC progression induced by NUF2 downregulation, while LY294002 and PD98059 partially reversed the effects of ERBB3 upregulation.ConclusionThese results showed that NUF2 promotes EOC progression through ERBB3-induced activation of the PI3K-AKT and MAPK signaling axes. These findings suggest that NUF2 might be a potential therapeutic target for EOC.
The RAC1 signal pathway is involved in various tumor cell biological processes. Here, the role of RAC1-miR-3613-RAC1 negative feedback loop in ovarian cancer was explored. Results showed that RAC1 knockdown up-regulated miR-3613, which in turn inhibited RAC1 expression. RAC1 counteracted the inhibitory effect of miR-3613 on the proliferation and invasion of ovarian cancer cells in vitro and on the tumor growth in vivo. In ovarian cancer, miR-3613 expression was negatively correlated with RAC1, and patients with low miR-3613 expression had poor prognosis. These findings indicate the role of RAC1-miR-3613-RAC1 negative feedback loop in the malignant progression of ovarian cancer and its possible therapeutic values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.