Specific cell adhesion and osteogenicity are both crucial factors for the long-term success of titanium implants. In this work, two mussel-derived bioactive peptides were designed to one-step dual-biofunctionalization of titanium implants via robust catechol/TiO coordinative interactions. The highly biomimetic peptides capped with integrin-targeted sequence or osteogenic growth sequence could efficiently improve the biocompatibilities of titanium implants and endow the implants with abilities to induce specific cell adhesion and enhanced osteogenicity. More importantly, rationally combined use of the two biomimetic peptides indicated an enhanced synergism on osteogenicity, osseointegration and finally the mechanical stability of Ti implants in vivo. Therefore, the highly biomimetic mussel-derived peptides and the dual-functional strategy in this study would provide a facile, safe, and effective means for improving clinical outcome of titanium-based medical implants.
This study was conducted to develop timolol maleate (TM)-loaded galactosylated chitosan (GC) nanoparticles (NPs) (TM-GC-NPs) followed by optimization via a four-level and three-factor Box-Behnken statistical experimental design. The optimized nanoparticles showed a particle size of 213.3 ± 6.83 nm with entrapment efficiency of 38.58 ± 1.31% and drug loading of 17.72 ± 0.28%. The NPs were characterized with respect to zeta potential, pH, surface morphology, and differential scanning calorimetry (DSC). The determination of the oil-water partition coefficient demonstrated that the TM-GC-NPs had a high liposolubility at pH 6 as compared to timolol-loaded chitosan nanoparticles (TM-CS-NPs) and commercial TM eye drops. The in vitro release study indicated that TM-GC-NPs had a sustained release effect compared with the commercial TM eye drops. Ocular tolerance was studied by the hen's egg chorioallantoic membrane (HET-CAM) assay and the formulation was non-irritant and could be used for ophthalmic drug delivery. The in vitro transcorneal permeation study and confocal microscopy showed enhanced penetration, and retention in the cornea was achieved with TM-GC-NPs compared with the TM-CS-NPs and TM eye drops. Preocular retention study indicated that the retention of TM-GC-NPs was significantly longer than that of TM eye drops. The in vivo pharmacodynamic study suggested TM-GC-NPs had a better intraocular pressure (IOP) lowering efficacy and a prolonged working time compared to commercial TM eye drops (P ≤ 0.05). The optimized TM-GC-NPs could be prepared successfully promising their use as an ocular delivery system.
We report the first synthesis of a gradient methylidene-ethylidene copolymer via a living C1 polymerization. The copolymer has a similar chemical structure as the corresponding ethylene-propylene copolymer. To achieve this goal a new and convenient source of the ethylide monomer, diethylsulfoxonium ethylide, was developed for the introduction of the methyl branch in the polymer backbone. The gradient copolymer contains a gradual change of instantaneous methyl branch content from 0% on one end of the polymer chain to 63% on the other end. Thermal analysis revealed that the gradient copolymers have a narrow glass transition temperature range with values intermediate between those of linear polyethylene and atactic polypropylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.