Implicit neural representations such as neural radiance fields (NeRFs) have recently emerged as a promising approach for 3D reconstruction and novel view synthesis. However, NeRF-based methods encode shape, reflectance, and illumination implicitly in their neural representations, and this makes it challenging for users to manipulate these properties in the rendered images explicitly. Existing approaches only enable limited editing of the scene and deformation of the geometry. Furthermore, no existing work enables accurate scene illumination after object deformation. In this work, we introduce SPIDR, a new hybrid neural SDF representation. SPIDR combines point cloud and neural implicit representations to enable the reconstruction of higher quality meshes and surfaces for object deformation and lighting estimation. To more accurately capture environment illumination for scene relighting, we propose a novel neural implicit model to learn environment light. To enable accurate illumination updates after deformation, we use the shadow mapping technique to efficiently approximate the light visibility updates caused by geometry editing. We demonstrate the effectiveness of SPIDR in enabling high quality geometry editing and deformation with accurate updates to the illumination of the scene. In comparison to prior work, we demonstrate significantly better rendering quality after deformation and lighting estimation.Recent work that aim to improve the editability of NeRFs (Yuan et al., 2022; Bao et al., 2022) involve extracting mesh representations from the NeRF representations. However, these approaches do not
Implicit neural representations with multi-layer perceptrons (MLPs) have recently gained prominence for a wide variety of tasks such as novel view synthesis and 3D object representation and rendering. However, a significant challenge with these representations is that both training and inference with an MLP over a large number of input coordinates to learn and represent an image, video, or 3D object, require large amounts of computation and incur long processing times. In this work, we aim to accelerate inference and training of coordinate-based MLPs for implicit neural representations by proposing a new split MLP architecture, Co-ordX. With CoordX, the initial layers are split to learn each dimension of the input coordinates separately. The intermediate features are then fused by the last layers to generate the learned signal at the corresponding coordinate point. This significantly reduces the amount of computation required and leads to large speedups in training and inference, while achieving similar accuracy as the baseline MLP. This approach thus aims at first learning functions that are a decomposition of the original signal and then fusing them to generate the learned signal. Our proposed architecture can be generally used for many implicit neural representation tasks with no additional memory overheads. We demonstrate a speedup of up to 2.92x compared to the baseline model for image, video, and 3D shape representation and rendering tasks.
This paper aims to analyze knowledge isomorphism between pre-trained deep neural networks. We propose a generic definition for knowledge isomorphism between neural networks at different fuzziness levels, and design a task-agnostic and model-agnostic method to disentangle and quantify isomorphic features from intermediate layers of a neural network. As a generic tool, our method can be broadly used for different applications. In preliminary experiments, we have used knowledge isomorphism as a tool to diagnose feature representations of neural networks. Knowledge isomorphism provides new insights to explain the success of existing deep-learning techniques, such as knowledge distillation and network compression. More crucially, it has been shown that knowledge isomorphism can also be used to refine pre-trained networks and boost performance. * Ruofan Liang and Tianlin Li contribute equally to this research
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.