Background: With the widespread application of regional low-flow perfusion (RLFP), development of surgical techniques, and shortened circulatory arrest time, deep hypothermia is indispensable for organ protection. Clinicians have begun to increase the temperature to reduce hypothermia-related adverse outcomes. The aim of this study was to evaluate the safety and efficacy of elevated temperatures during aortic arch surgery with lower body circulatory arrest (LBCA) combined with RLFP.Methods: We retrospectively analyzed data from 207 consecutive pediatric patients who underwent aortic arch repair with LBCA & RLFP between January 2010 and July 2017 and evaluated different hypothermia management strategies. The overall cohort was divided into three groups: deep hypothermia (DH, 20.0–25.0°C), moderate hypothermia (MoH, 25.1–30.0°C) and mild hypothermia (MH, 30.1–34.0°C).Results: The percentage of AKI-1 occurrences was significantly increased in the MH group (51.52%) compared to those in the DH (25.40%) and MoH (37.84%) groups (P = 0.036); prolonged hospital stay occurrences were decreased with elevated temperature (DH 47.62%, MoH 28.83%, MH 18.18%, P = 0.006). Neurological complications, peritoneal dialysis, hepatic dysfunction, 30-day hospital mortality, delay extubation occurrences were no significant among the groups. Logistic analysis showed that the MH group was negatively associated with post-op AKI-1 compared with the DH group [OR = 0.329 (0.137–0.788), P = 0.013], no differences were found between the MoH and the MH group. Compared to other groups, the intubation time (P = 0.006) and postoperative hospital stay (P = 0.009) were significantly decreased in the MH group. Multivariate logistic analysis showed hypothermia levels were not significant with prolonged hospital stay.Conclusions: This retrospective analysis demonstrated that for pediatric patients undergoing surgeries with RLFP & LBCA, three different gradient temperature management strategies are available: deep, moderate, and mild hypothermia. Utilizing mild or moderate hypothermia is safe and feasible. Although the number of AKI-1 occurrences in the MH group was significantly increased compared to those in the other groups, further analysis showed no significance in the MoH and MH group, mild hypothermia management is as safe as others when used appropriately.
Due to the limitations of space or extra costs incurred, the reliability optimization problem of a spare system is of great interest and importance. In this article, we devote our efforts into the investigation of reliability optimization problem of the warm spare gate and cold spare gate. For a spare gate with fixed components, we first examine the relationship between the component order and the corresponding reliability; then, the equivalence of a cascaded model with a multiple-input spare gate is further presented. We find that for a warm spare gate, the corresponding reliability value is anticipated to be affected by the adopted component replacing order; nevertheless, the reliability is a fixed value once the components are provided for a cold spare gate. This finding indicates that reliability is irrespective of the component order for a cold spare gate. Therefore, for the warm spare gate, the component order can be varied to improve the corresponding system reliability, whereas for the cold spare gate, we should attempt to improve the reliabilities of the spare components aiming to obtain a higher reliability. These findings are potentially useful in the design process of a system consisting of spare gates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.