SUMMARY
To fulfill the bioenergetic and biosynthetic demand of proliferation, T cells reprogram their metabolic pathways from fatty acid β-oxidation and pyruvate oxidation via the TCA cycle to the glycolytic, pentose-phosphate, and glutaminolytic pathways. Two of the top-ranked candidate transcription factors potentially responsible for the activation-induced T cell metabolic transcriptome, HIF1α and Myc, were induced upon T cell activation, but only the acute deletion of Myc markedly inhibited activation-induced glycolysis and glutaminolysis in T cells. Glutamine deprivation compromised activation-induced T cell growth and proliferation, and this was partially replaced by nucleotides and polyamines, implicating glutamine as an important source for biosynthetic precursors in active T cells. Metabolic tracer analysis revealed a Myc-dependent metabolic pathway linking glutaminolysis to the biosynthesis of polyamines. Therefore, a Myc-dependent global metabolic transcriptome drives metabolic reprogramming in activated, primary T lymphocytes. This may represent a general mechanism for metabolic reprogramming under patho-physiological conditions.
Summary
The c-Myc HLH-bZIP protein has been implicated in physiological or pathological growth, proliferation, apoptosis, metabolism and differentiation at the cellular, tissue or organismal levels via regulation of numerous target genes. No principle yet unifies Myc action due partly to an incomplete inventory and functional accounting of Myc’s targets. To observe Myc target expression and function in a system where Myc is temporally and physiologically regulated, the transcriptomes and the genome-wide distributions of Myc, RNA polymerase II and chromatin modifications were compared during lymphocyte activation and in ES cells as well. A remarkably simple rule emerged from this quantitative analysis: Myc is not an on-off specifier of gene activity, but is a non-linear amplifier of expression, acting universally at active genes, except for immediate early genes that are strongly induced before Myc. This rule of Myc action explains the vast majority of Myc biology observed in literature.
Summary
B cell activation leads to proliferation and antibody production that can protect from pathogens or promote autoimmunity. Regulation of cell metabolism is essential to support the demands of lymphocyte growth and effector function and may regulate tolerance. Here, we tested the regulation and role of glucose uptake and metabolism in the proliferation and antibody production of control, anergic, and autoimmune-prone B cells. Control B cells had a balanced increase in lactate production and oxygen consumption following activation, with proportionally increased glucose transporter Glut1 expression and mitochondrial mass upon either LPS or BCR stimulation. This contrasted with metabolic reprogramming of T cells, which had lower glycolytic flux when resting but disproportionately increased this pathway upon activation. Importantly, tolerance greatly affected B cell metabolic reprogramming. Anergic B cells remained metabolically quiescent, with only a modest increase in glycolysis and oxygen consumption with LPS stimulation. B cells chronically stimulated with elevated B cell Activating Factor (BAFF), however, rapidly increased glycolysis and antibody production upon stimulation. Induction of glycolysis was critical for antibody production, as glycolytic inhibition with the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA) sharply suppressed B cell proliferation and antibody secretion in vitro and in vivo. Further, B cell-specific deletion of Glut1 led to reduced B cell numbers and impaired antibody production in vivo. Together, these data show that activated B cells require Glut1-dependent metabolic reprogramming to support proliferation and antibody production that is distinct from T cells and that this glycolytic reprogramming is regulated in tolerance.
The immunological process of clonal selection requires a rapid burst in lymphocyte proliferation, and this involves a metabolic shift to provide energy and the building blocks of new cells. After activation, naive and memory T cells switch from the oxidation of free fatty acids to glycolysis and glutaminolysis to meet these demands. Beyond this, however, the availability of specific metabolites and the pathways that process them interconnect with signaling events in the cell to influence cell cycle, differentiation, cell death and immunological function. Here we define 'metabolic checkpoints' that represent such interconnections and provide examples of how these checkpoints sense metabolic status and transduce signals to affect T lymphocyte responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.