We propose a novel scheme for fabricating high-accuracy optical fiber delay lines (OFDLs). The fabrication system integrates a self-designed optical fiber cutting device and a high-accuracy fiber length measurement module based on optical frequency domain reflectometry. The optical fiber cutting device can cleave optical fibers to a specific length with the help of the motorized stage. The accuracy of fiber-cutting was determined by the positional accuracy of the motorized stage, which can reach several microns or even lower. This integrated design significantly reduces the errors and uncertainties introduced by fiber-cutting. To test, a set of OFDLs of a certain length was fabricated by this system. The deviation from the desired fiber length was kept below 50 μm, thus proving high fabrication accuracy and repeatability.
In this paper, a novel approach to achieving a wideband tunable dual-passband microwave photonic filter (MPF) is proposed based on optical-injected distributed feedback (DFB) semiconductor lasers and a dual-output Mach–Zehnder modulator (DOMZM). The fundamental concepts for realizing the MPF are the wavelength-selective amplification effect and the period-one oscillation state under optically injected DFB lasers. These effects provide a widely tunable range of center frequency, along with high flexibility and low insertion loss. The proposed MPF is experimentally demonstrated, showing that the dual-passband center frequency in the MPF can be tuned independently from 19 to 37 GHz by adjusting the detuning frequency and injection ratio. Meanwhile, the insertion loss of the system is about 15 dB when there is no optical or electrical amplifier in the MPF link. The out-of-band suppression ratio of the MPF is more than 20 dB, which can be improved by adjusting the power of the two optical signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.