Background Hepatocellular carcinoma (HCC) is still the most common cause of tumor-related death worldwide and accumulating studies report that long non-coding RNAs (LncRNAs) are closely related with HCC development, metastasis and prognosis. Cisplatinum, a well-known chemotherapeutic drug, has been widely used for treatment of numerous human cancers including HCC. This study aimed to investigate the differential expressions of LncRNAs in HCC cells treated with cisplatinum and its underlying mechanism. Methods The differential expressions of LncRNAs in HCC cells treated with cisplatinum were determined by RNA-seq. The roles of TPTEP1 in HCC development by applying gene function gain and loss analysis in MHCC97H and QYG-7703 cell lines were detected by quantitative real-time polymerase chain reaction (qRT-PCR), cell proliferation, colony formation, cell invasion and flow cytometry assays. The underlying mechanism of TPTEP1 sensitizing hepatocellular carcinoma cells to cisplatinum was examined by RNA-pull down, western blotting, subcellular fractionation, RNA immunoprecipitation and dual luciferase reporter assays. The effect of TPTEP1 on tumorigenesis in vivo was performed with a subcutaneous xenograft mouse model of HCC. In addition, TPTEP1 expression was detected in clinical tumor tissue samples by qRT-PCR. Results LncRNA TPTEP1 was highly expressed in cisplatinum-treated HCC cells, which sensitizes hepatocellular carcinoma cell to cisplatinum-induced apoptosis. TPTEP1 overexpression inhibited, while TPTEP1 knockdown promoted HCC cell proliferation, tumorigenicity and invasion. Furthermore, TPTEP1 exerted its tumor suppressing activities by interacting with signal transducer and activator of transcription 3 (STAT3) to inhibit its phosphorylation, homodimerization, nuclear translocation and down-stream genes transcription. Moreover, TPTEP1 overexpression obviously inhibits tumor masses in vivo in a subcutaneous xenograft mouse model of HCC and TPTEP1 is frequently downregulated in HCC tissues, compared to its corresponding pre-tumor tissues. Conclusion LncRNA TPTEP1 inhibits hepatocellular carcinoma cells progression by affecting IL-6/STAT3 signaling. Taken together, our findings suggest a tumor suppressing role of TPTEP1 in HCC progression and provide a novel understanding of TPTEP1 during the chemotherapy for HCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1193-0) contains supplementary material, which is available to authorized users.
PurposeTo analyze the role of six human epididymis protein 4 (HE4)‐related mitochondrial ribosomal proteins (MRPs) in ovarian cancer and selected MRPL15, which is most closely related to the tumorigenesis and prognosis of ovarian cancer, for further analyses.MethodsUsing STRING database and MCODE plugin in Cytoscape, six MRPs were identified among genes that are upregulated in response to HE4 overexpression in epithelial ovarian cancer cells. The Cancer Genome Atlas (TCGA) ovarian cancer, GTEX, Oncomine, and TISIDB were used to analyze the expression of the six MRPs. The prognostic impact and genetic variation of these six MRPs in ovarian cancer were evaluated using Kaplan‐Meier Plotter and cBioPortal, respectively. MRPL15 was selected for immunohistochemistry and GEO verification. TCGA ovarian cancer data, gene set enrichment analysis, and Enrichr were used to explore the mechanism of MRPL15 in ovarian cancer. Finally, the relationship between MRPL15 expression and immune subtype, tumor‐infiltrating lymphocytes, and immune regulatory factors was analyzed using TCGA ovarian cancer data and TISIDB.ResultsSix MRPs (MRPL10, MRPL15, MRPL36, MRPL39, MRPS16, and MRPS31) related to HE4 in ovarian cancer were selected. MRPL15 was highly expressed and amplified in ovarian cancer and was related to the poor prognosis of patients. Mechanism analysis indicated that MRPL15 plays a role in ovarian cancer through pathways such as the cell cycle, DNA repair, and mTOR 1 signaling. High expression of MRPL15 in ovarian cancer may be associated with its amplification and hypomethylation. Additionally, MRPL15 showed the lowest expression in C3 ovarian cancer and was correlated with proliferation of CD8+ T cells and dendritic cells as well as TGFβR1 and IDO1 expression.ConclusionMRPL15 may be a prognostic indicator and therapeutic target for ovarian cancer. Because of its close correlation with HE4, this study provides insights into the mechanism of HE4 in ovarian cancer.
BackgroundCancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment (TME). These cells play a supportive role throughout cancer progression. Their ability to modulate the immune system has also been noted. However, there has been limited investigation of CAFs in the TME of epithelial ovarian cancer (EOC).MethodsWe comprehensively evaluated the CAF landscape and its association with gene alterations, clinical features, prognostic value, and immune cell infiltration at the pan-cancer level using multi-omic data from The Cancer Genome Atlas (TCGA). The CAF contents were characterized by CAF scores based on the expression levels of seven CAF markers using the R package “GSVA.” Next, we identified the molecular subtypes defined by CAF markers and constructed a CAF riskscore system using principal component analysis in the EOC cohort. The correlation between CAF riskscore and TME cell infiltration was investigated. The ability of the CAF riskscore to predict prognosis and immunotherapy response was also examined.ResultsCAF components were involved in multiple immune-related processes, including transforming growth factor (TGF)-β signaling, IL2-STAT signaling, inflammatory responses, and Interleukin (IL) 2-signal transducer and activator of transcription (STAT) signaling. Considering the positive correlation between CAF scores and macrophages, neutrophils, and mast cells, CAFs may exert immunosuppressive effects in both pan-cancer and ovarian cancer cohorts, which may explain accelerated tumor progression and poor outcomes. Notably, two distinct CAF molecular subtypes were defined in the EOC cohort. Low CAF riskscores were characterized by favorable overall survival (OS) and higher efficacy of immunotherapy. Furthermore, 24 key genes were identified in CAF subtypes. These genes were significantly upregulated in EOC and showed a strong correlation with CAF markers.ConclusionsIdentifying CAF subtypes provides insights into EOC heterogeneity. The CAF riskscore system can predict prognosis and select patients who may benefit from immunotherapy. The mechanism of interactions between key genes, CAF markers, and associated cancer-promoting effects needs to be further elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.