Immune checkpoints include stimulatory and inhibitory checkpoint molecules. In recent years, inhibitory checkpoints, including cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death ligand 1 (PD-L1), have been identified to suppress anti-tumor immune responses in solid tumors. Novel drugs targeting immune checkpoints have succeeded in cancer treatment. Specific PD-1 blockades were approved for treatment of melanoma in 2014 and for treatment of non-small-cell lung cancer in 2015 in the United States, European Union, and Japan. Preclinical and clinical studies show immune checkpoint therapy provides survival benefit for greater numbers of patients with liver cancer, including hepatocellular carcinoma and cholangiocarcinoma, two main primary liver cancers. The combination of anti-PD-1/PD-L1 with anti-CTLA-4 antibodies is being evaluated in phase 1, 2 or 3 trials, and the results suggest that an anti-PD-1 antibody combined with locoregional therapy or other molecular targeted agents is an effective treatment strategy for HCC. In addition, studies on activating co-stimulatory receptors to enhance anti-tumor immune responses have increased our understanding regarding this immunotherapy in liver cancer. Epigenetic modulations of checkpoints for improving the tumor microenvironment also expand our knowledge of potential therapeutic targets in improving the tumor microenvironment and restoring immune recognition and immunogenicity. In this review, we summarize current knowledge and recent developments in immune checkpoint-based therapies for the treatment of hepatocellular carcinoma and cholangiocarcinoma and attempt to clarify the mechanisms underlying its effects.
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK’s potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Liver metastasis (LM) is one of the major causes of death in patients with colorectal cancer (CRC). Approximately 60% of CRC patients develop LM during the course of their illness. About 85% of these patients have unresectable disease at the time of presentation. Surgical resection is currently the only curative treatment for patients with colorectal LM (CRLM). In recent years, with the help of modern multimodality therapy including systemic chemotherapy, radiation therapy, and surgery, the outcomes of CRLM treatment have significantly improved. This article summarizes the current status of surgical treatment of CRLM including evaluation of resectability, treatment for resectable LM, conversion therapy and liver transplantation for unresectable cases, liver resection for recurrent CRLM and elderly patients, and surgery for concomitant hepatic and extra-hepatic metastatic disease (EHMD). We believe that with the help of modern multimodality therapy, an aggressive oncosurgical approach should be implemented as it has the possibility of achieving a cure, even when EHMD is present in patients with CRLM.
BackgroundCancer-associated fibroblasts (CAFs) are essential components of the tumor microenvironment (TME). These cells play a supportive role throughout cancer progression. Their ability to modulate the immune system has also been noted. However, there has been limited investigation of CAFs in the TME of epithelial ovarian cancer (EOC).MethodsWe comprehensively evaluated the CAF landscape and its association with gene alterations, clinical features, prognostic value, and immune cell infiltration at the pan-cancer level using multi-omic data from The Cancer Genome Atlas (TCGA). The CAF contents were characterized by CAF scores based on the expression levels of seven CAF markers using the R package “GSVA.” Next, we identified the molecular subtypes defined by CAF markers and constructed a CAF riskscore system using principal component analysis in the EOC cohort. The correlation between CAF riskscore and TME cell infiltration was investigated. The ability of the CAF riskscore to predict prognosis and immunotherapy response was also examined.ResultsCAF components were involved in multiple immune-related processes, including transforming growth factor (TGF)-β signaling, IL2-STAT signaling, inflammatory responses, and Interleukin (IL) 2-signal transducer and activator of transcription (STAT) signaling. Considering the positive correlation between CAF scores and macrophages, neutrophils, and mast cells, CAFs may exert immunosuppressive effects in both pan-cancer and ovarian cancer cohorts, which may explain accelerated tumor progression and poor outcomes. Notably, two distinct CAF molecular subtypes were defined in the EOC cohort. Low CAF riskscores were characterized by favorable overall survival (OS) and higher efficacy of immunotherapy. Furthermore, 24 key genes were identified in CAF subtypes. These genes were significantly upregulated in EOC and showed a strong correlation with CAF markers.ConclusionsIdentifying CAF subtypes provides insights into EOC heterogeneity. The CAF riskscore system can predict prognosis and select patients who may benefit from immunotherapy. The mechanism of interactions between key genes, CAF markers, and associated cancer-promoting effects needs to be further elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.