Polyurethane (PU) is a polymer with great capabilities like high elasticity, low-temperature resistance, wear resistance, and corrosion resistance. However, it will inevitably be damaged in processing or long-term use, which will shorten the service life of the material and increase the potential safety hazards. The widespread use of polyurethanes has given researchers more motivation to make polyurethanes self-healing, thereby eliminating material damage and potential safety hazards to a certain extent. This paper mainly reviews the self-healing mechanism and the research progress of intrinsic self-healing polyurethanes based on dynamic reversible non-covalent bonds, including H-bonding, metal-ligand, π-π and host-guest interactions. This paper holds that the non-covalent self-healing polyurethane can repair cracks repeatedly without adding a repair agent by introducing the above non-covalent reversible bonds into the polyurethane with good mechanical properties. Various types of reversible bonds provide a variety of options for self-healing. In addition, through the research on the preparation, mechanical properties, and self-healing ability of various self-healing polyurethanes, this paper summarizes and analyzes the prospect and existing problems of self-healing polyurethanes. In the future, researchers should focus on solving the existing deficiencies. This paper looks forward to finding a better scheme to improve the performance of self-healing polyurethanes and preparing ideal self-healing polyurethane materials that appear in the public’s field of vision. This paper is written to provide help for the research of self-healing PU and accelerate the transformation of the world to green development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.