In this work, a series of biodegradable pure iron, Fe-30Mn and Fe-30Mn-Ag alloys were developed by using a rapid solidification technology. A fine a-Fe dendrite was formed in pure iron, resulting in a high compressive yield strength of above 300 MPa. The Fe-30Mn alloy doped with only 1% Ag exhibited a significant increase in the degradation rate in simulated body fluid due to the precipitation of Ag-rich particles in alloy matrix and the induction of the microgalvanic corrosion. In addition, the novel Fe-30Mn-Ag alloy also exhibited a good magnetic compatibility and offered a closely approaching requirement for biodegradable medical applications.
ᅟA graded nano-glass/zirconia (G/Z) system has been developed via the infiltration of nano-glass into a nano-zirconia surface, which is advantageous for robust core-veneer bonds. The aging issue is a key for yttrium-stabilized tetragonal zirconia polycrystals (Y-TZPs), and therefore, it is necessary to evaluate the influence of aging degradation on the biocompatibility of G/Z systems before their possible clinical application. Herein, such biocompatibility testing was performed with human gingival fibroblasts (HGFs) seeded onto unaged/aged G/Z and Y-TZP for 2–72 h. Assessments included an oral mucous membrane irritation test in conjunction with analyses of cell viability, cell adhesion, and oxidative stress responses. Significant metabolic decreases in aged G/Z- and Y-TZP-treated cells were observed at 72 h. G/Z did not elicit any significant differences in cell viability compared with Y-TZP over 72 h both before and after aging. The oxidative stress data for the aged G/Z- and Y-TZP-treated cells showed a significant increase at 72 h. The G/Z specimens did not elicit any significant differences in ROS production compared with Y-TZP over 72 h both before and after aging. The cell adhesion rates of both G/Z and Y-TZP increased significantly after aging. The cell adhesion rates of G/Z and Y-TZP were not significantly different before and after aging. According to the oral mucous membrane irritation test, scores for macroscopic and microscopic observations for both the aged G/Z and unaged G/Z sides were 0, demonstrating no consequent irritation.ConclusionsThe excellent biocompatibility of G/Z indicates that it has potential for future clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.