PurposeOvarian cancer (OC) is the most common type of gynecologic cancer in the world with a high rate of mortality. Due to manifestation of generic symptoms and absence of specific biomarkers, OC is usually diagnosed at a late stage. Machine learning models can be employed to predict driver genes implicated in causative mutations.Design/methodology/approachIn the present study, a comprehensive next generation sequencing (NGS) analysis of whole exome sequences of 47 OC patients was carried out to identify clinically significant mutations. Nine functional features of 708 mutations identified were input into a machine learning classification model by employing the eXtreme Gradient Boosting (XGBoost) classifier method for prediction of OC driver genes.FindingsThe XGBoost classifier model yielded a classification accuracy of 0.946, which was superior to that obtained by other classifiers such as decision tree, Naive Bayes, random forest and support vector machine. Further, an interaction network was generated to identify and establish correlations with cancer-associated pathways and gene ontology data.Originality/valueThe final results revealed 12 putative candidate cancer driver genes, namely LAMA3, LAMC3, COL6A1, COL5A1, COL2A1, UGT1A1, BDNF, ANK1, WNT10A, FZD4, PLEKHG5 and CYP2C9, that may have implications in clinical diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.