Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide, with few effective therapeutic options for advanced disease. At least 40% of HCCs are clonal, potentially arising from STAT3 þ , NANOG þ and OCT3/4 þ liver progenitor/stem cell transformation, along with inactivation of transforming growth factor-beta (TGF-b) signaling. Here we report significantly greater signal transducer and activator of transcription 3 (STAT3) and tyrosine phosphorylated STAT3 in human HCC tissues (Po0.0030 and Po0.0455, respectively) than in human normal liver. Further, in HCC cells with loss of response to TGF-b, NSC 74859, a STAT3-specific inhibitor, markedly suppresses growth. In contrast, CD133 þ status did not affect the response to STAT3 inhibition: both CD133 þ Huh-7 cells and CD133 -Huh-7 cells are equally sensitive to NSC 74859 treatment and STAT3 inhibition, with an IC 50 of 100 lM. Thus, the TGF-b/beta2 spectrin (b2SP) pathway may reflect a more functional 'stem/progenitor' state than CD133. Furthermore, NSC 74859 treatment of Huh-7 xenografts in nude mice significantly retarded tumor growth, with an effective dose of only 5 mg/kg. Moreover, NSC 74859 inhibited tyrosine phosphorylation of STAT3 in HCC cells in vivo. We conclude that inhibiting interleukin 6 (IL6)/STAT3 in HCCs with inactivation of the TGF-b/b2SP pathway is an effective approach in management of HCCs. Thus, IL6/STAT3, a major signaling pathway in HCC stem cell renewal and proliferation, can provide a novel approach to the treatment of specific HCCs.
Hereditary cancer syndromes provide powerful insights into dysfunctional signaling pathways that lead to sporadic cancers. Beckwith-Wiedemann syndrome (BWS) is a hereditary human cancer stem cell syndrome currently linked to deregulated imprinting at chromosome 11p15 and uniparental disomy. However, causal molecular defects and genetic models have remained elusive to date in the majority of cases. The non-pleckstrin homology domain β-spectrin (β2SP) (the official name for human is Spectrin, beta, nonerythrocytic 1 (SPTBN1), isoform 2; the official name for mouse is Spectrin beta 2 (Spnb2), isoform 2), a scaffolding protein, functions as a potent TGF-β signaling member adaptor in tumor suppression and development. Yet, the role of the β2SP in human tumor syndromes remains unclear. Here, we report that β2SP+/− mice are born with many phenotypic characteristics observed in BWS patients, suggesting that β2SP mutant mice phenocopy BWS, and β2SP loss could be one of the mechanisms associated with BWS. Our results also suggest that epigenetic silencing of β2SP is a new potential causal factor in human BWS patients. Furthermore, β2SP+/− mice provide an important animal model for BWS, as well as sporadic cancers associated with it, including lethal gastrointestinal and pancreatic cancer. Thus, these studies could lead to further insight into defects generated by dysfunctional stem cells and identification of new treatment strategies and functional markers for the early detection of these lethal cancers that otherwise cannot be detected at an early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.