The computation of link prediction is one of the most important tasks on a social network. Several methods are available in the literature to predict links in networks and RSM index is one of them. The RSM index is applicable in the fuzzy environment and it does not incorporate the notion of falsity and indecency parameters which occur frequently in uncertain environments. In the present method, the behaviors of the common neighbor and the other parameters, like nature of job, location, etc., are considered. In this paper, more parameters are included in the RSM index for making it more flexible and realistic and it is best fitted in the neutrosophic environment. Many important properties are studied for this modified RSM index. A small network from Facebook is considered to illustrate the problem.
Colouring of graphs is being used in several representations of real world systems like map colouring, traffic signalling, etc. This study introduces the edge colouring of fuzzy graphs. The chromatic index and the strong chromatic index are defined and related properties are investigated. In addition, job oriented web sites, traffic light problems have been presented and solved using the edge colouring of fuzzy graphs more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.