Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat.
Despite the vast number of techniques developed for the cyclization of small peptides, cyclization efficiency remains problematic in peptides that lack turn-promoting structures. Here we demonstrate the utility of click chemistry as a macrocyclization tool in the solid-phase synthesis of cyclic tetra-, penta-, hexa-, and heptapeptides. On-resin cyclization is completed at room temperature within 6 h, resulting in predominantly monomer with small amounts of cyclomultimer byproducts.
The effect of peptide-to-peptoid substitutions on the passive membrane permeability of an N-methylated cyclic hexapeptide is examined. In general, substitutions maintained permeability but increased conformational heterogeneity. Diversification with nonproteinogenic side chains increased permeability up to 3-fold. Additionally, the conformational impact of peptoid substitutions within a β-turn are explored. Based on these results, the strategic incorporation of peptoid residues into cyclic peptides can maintain or improve cell permeability, while increasing access to diverse side-chain functionality.
The chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids. At the same time, theoretical calculations and experimental assays were used to track and reduce the polarity while closely monitoring the physicochemical properties. This strategy led to the discovery of macrocyclic peptide-peptoid hybrids with high CXCR7 binding affinities (K < 100 nM) and measurable passive permeability (P > 5 × 10 cm/s). Moreover, bioactive peptide 25 (K = 9 nM) achieved oral bioavailability of 18% in rats, which was commensurate with the observed plasma clearance values upon intravenous administration.
Estimating the reactivity of 2 ′ -hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2 ′ -hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.