Stabbing is the most common method for violent death in the UK. As part of their investigation, forensic pathologists are commonly asked to estimate or quantify the degree of force required to create a wound. The force required to penetrate the skin and body by a knife is a complex function of the sharpness of the knife, the area of the body and alignment with cleavage lines of the skin, the angle of attack and the relative movement of the person stabbing relative to the victim being stabbed. This makes it difficult for the forensic pathologist to give an objective answer to the question; hence, subjective estimations are often used. One area where some degree of quantification is more tractable is in assessing how sharp an implement (particularly a knife) is. This paper presents results of a systematic study of how the different aspects of knife geometry influence sharpness and presents a simple test for assessing knife sharpness using drop testing. The results show that the radius of the blunt edge at the tip is important for controlling the penetration ability of a kitchen knife. Using high-speed video, it also gives insight into the mechanism of knife penetration into the skin. The results of the study will aid pathologists in giving a more informed answer to the question of the degree of force used in stabbing.
Ballistic head injury remains a significant threat to military personnel. Studying such injuries requires a model that can be used with a military helmet. This paper describes further work on a skull-brain model using skulls made from three different polyurethane plastics and a series of skull ‘fills’ to simulate brain (3, 5, 7 and 10% gelatine by mass and PermaGel™). The models were subjected to ballistic impact from 7.62 × 39 mm mild steel core bullets. The first part of the work compares the different polyurethanes (mean bullet muzzle velocity of 708 m/s), and the second part compares the different fills (mean bullet muzzle velocity of 680 m/s). The impact events were filmed using high speed cameras. The resulting fracture patterns in the skulls were reviewed and scored by five clinicians experienced in assessing penetrating head injury. In over half of the models, one or more assessors felt aspects of the fracture pattern were close to real injury. Limitations of the model include the skull being manufactured in two parts and the lack of a realistic skin layer. Further work is ongoing to address these.
The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre-and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.
SYNBONE® spheres were impacted with 7.62 × 39 mm mild steel core ammunition at a mean impact velocity of 654 m/s, SD 7 m/s, to simulate engagement distances of around 50-100 m. The wounds and fracture patterns were assessed by two forensic pathologists familiar with military cranial injury. The overall fracture pattern was assessed as being too comminuted when compared with actual injury. This suggests the SYNBONE® spheres have less utility for simulating military injury than other purposes described in the literature.
Six synthetic head models wearing ballistic protective helmets were used to recreate two military combat-related shooting incidents (three per incident, designated 'Incident 1' and 'Incident 2'). Data on the events including engagement distances, weapon and ammunition types was collated by the Defence Science and Technology Laboratory. The models were shot with 7.62 × 39 mm ammunition downloaded to mean impact velocities of 581 m/s (SD 3.5 m/s) and 418 m/s (SD 8 m/s), respectively, to simulate the engagement distances. The damage to the models was assessed using CT imaging and dissection by a forensic pathologist experienced in reviewing military gunshot wounds. The helmets were examined by an MoD engineer experienced in ballistic incident analysis. Damage to the helmets was consistent with that seen in real incidents. Fracture patterns and CT imaging on two of the models for Incident 1 (a frontal impact) were congruent with the actual incident being modelled. The results for Incident 2 (a temporoparietal impact) produced realistic simulations of tangential gunshot injury but were less representative of the scenario being modelled. Other aspects of the wounds produced also exhibited differences. Further work is ongoing to develop the models for greater ballistic injury fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.