This review paper discusses the formation and propagation of adiabatic shear bands in nickel-based superalloys. The formation of adiabatic shear bands (ASBs) is a unique dynamic phenomenon that typically precedes catastrophic, unpredicted failure in many metals under impact or ballistic loading. ASBs are thin regions that undergo substantial plastic shear strain and material softening due to the thermo-mechanical instability induced by the competitive work hardening and thermal softening processes. Dynamic recrystallization of the material’s microstructure in the shear region can occur and encourages shear localization and the formation of ASBs. Phase transformations are also often seen in ASBs of ferrous metals due to the elevated temperatures reached in the narrow shear region. ASBs ultimately lead to the local degradation of material properties within a narrow band wherein micro-voids can more easily nucleate and grow compared to the surrounding material. As the micro-voids grow, they will eventually coalesce leading to crack formation and eventual fracture. For elevated temperature applications, such as in the aerospace industry, nickel-based superalloys are used due to their high strength. Understanding the formation conditions of ASBs in nickel-based superalloys is also beneficial in extending the life of machining tools. The main goal of the review is to identify the formation mechanisms of ASBs, the microstructural evolutions associated with ASBs in nickel-based alloys, and their consequent effect on material properties. Under a shear strain rate of 80,000 s−1, the critical shear strain at which an ASB forms is between 2.2 and 3.2 for aged Inconel 718 and 4.5 for solution-treated Inconel 718. Shear band widths are reported to range between 2 and 65 microns for nickel-based superalloys. The shear bands widths are narrower in samples that are aged compared to samples in the annealed or solution treated condition.
In this work, Additive Friction Stir Deposition (AFSD) was employed for ballistic repair of AA7075-T6511 plates. After penetration with 7.62 × 51 mm FMJ rounds, the AA7075-T6511 plates were repaired by AFSD using the same AA7075-T6511 feedstock material. The repaired plates were impacted and penetrated with the same 7.62 × 51 mm FMJ rounds, and the surface damage characteristics including the initial and residual velocities were compared against the control wrought plates. The AFSD process successfully repaired the damaged control plates with the same alloy, without any observable defects such as large cracks or pores prior to impact tests. Although the surface appeared pristine other than milling marks, the surface damage characteristics of the repaired plates were significantly different than the control plates. The increase of spalling and petalling with the repaired material can be attributed to the thermomechanical processing of AFSD, which would alter the control T6511 temper of the feedstock due to coarsening of strengthening precipitates. A cross-sectioned repaired plate was analyzed using microhardness plots and optical microscopy to illustrate the effectiveness of the AFSD process for ballistic repair by depositing the same material into the damaged area. Despite the surface damage discrepancy, the repaired plates performed similarly to the control plates with respect to initial and residual velocities.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.