Although quinidine has been recommended as a probe substrate for the P-gp inhibition assay using Caco-2 cell monolayer, it has not been studied widely in the in vitro system. In the present investigation, in vitro permeability studies using Caco-2 cell monolayer were carried out in order to optimize and validate quinidine as a P-gp probe substrate. In bi-directional Caco-2 assay across different passages, a good efflux ratio of more than ten was consistently obtained at 100 nM donor concentration of quinidine. Quinidine was found to have a good mass balance in the Caco-2 system. The inhibitory potencies of known P-gp inhibitors viz verapamil, ketoconazole, tacrolimus and cyclosporine A, determined over a wide concentration range, showed low apparent IC(50) values. Overall, quinidine was found to be a good probe substrate for routine use to assess the in vitro inhibitory potency of NCEs on Pgp-mediated transport.
A simple, sensitive and specific reverse-phase high-performance liquid chromatographic (RP-HPLC) method with fluorescence detection was developed for quantitation of quinidine from HBSS buffer. The method was applicable in the bi-directional transport assay for evaluation of the inhibitory effect of test compounds on P-glycoprotein-mediated quinidine transport; quinidine was used as a probe P-glycoprotein substrate. The calibration curve was linear (correlation coefficient >/=99) in the range 0.30-100.00 nm. The method was validated and is specific and sensitive with limit of quantitation of 300 pm for quinidine. The method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions where the analyte was found to be stable. The applicability and reliability of the analytical method was evaluated by successful demonstration of efflux ratio (P(app)B --> A/P(app)A --> B) in the Caco-2 cell monolayer efflux assay. The efflux ratio for quinidine (100 nm) alone was 10.8, which reduced to less than 2 in the presence of the classical P-gp inhibitors verapamil and ketoconazole (100 mum each).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.