The primary toxicity associated with repeated oral administration of the PDE4 inhibitor IC542 to the rat is an inflammatory response leading to tissue damage primarily in the gastrointestinal tract and mesentery. Although necrotizing vasculitis is frequently seen with other PDE4 inhibitors, blood vessel injury was rare following IC542 administration and was always associated with inflammation in the surrounding tissue. The incidence and severity of the histologic changes in these studies correlated with elevated peripheral blood leukocytes, serum IL-6, haptoglobin, and fibrinogen, and with decreased serum albumin. By monitoring haptoglobin, fibrinogen and serum albumin changes in IC542-treated rats, it was possible to identify rats with early histologic changes that were reversible. Since PDE4 inhibition is generally associated with anti-inflammatory activity, extensive inflammation in multiple tissues was unexpected with IC542. Co-administration of dexamethasone completely blocked IC542-induced clinical and histologic changes in the rat, confirming the toxicity resulted from inflammatory response. In addition, IC542 augmented release of the proinflammatory cytokine IL-6 in LPS-activated whole blood from rats but not monkeys or humans. The effect of IC542 on IL-6 release from rat leukocytes in vitro is consistent with the proinflammatory response observed in vivo and demonstrates species differences to PDE4 inhibition.
Covalent binding of radiolabel to tissue proteins following [14C]trichloroethene (TRI) exposure has been used as a measure of TRI activation. Gross binding of 14C label does not differentiate between alternate routes of metabolism and can be confounded when there is significant metabolic incorporation of radiolabel. We examined the covalent association of 14C label to hepatic and renal proteins in male F344 rats and B6C3F1 mice following oral treatment with [14C]TRI and three metabolites of TRI: [14C]trichloroacetate (TCA), [14C]dichloroacetate (DCA), and [14C]dichlorovinylcysteine (DCVC) in vivo. Association of radiolabel from [14C]TRI with hepatic proteins reached a maximum at 2 and 4 h in mouse and rat hepatic proteins, respectively. Association of radiolabel with renal proteins reached a maximum at 8 h in both species. An approach was developed based upon formation of protein adducts that release acetate and monochloroacetate (MCA) on acid hydrolysis. These adducts were found to be specifically associated with the activation of DCVC to reactive intermediates. Acetate and MCA were identified by using two different conditions of high-performance liquid chromatography (HPLC) separation with differing selectivity. Diethylmaleate and aminooxyacetic acid pretreatment inhibited the formation of these adducts from TRI, consistent with requirements for glutathione and beta-lyase. No evidence of these adducts was detected following [14C]TCA and [14C]DCA treatment. Renal acid-labile adduct formation from 25 mg/kg DCVC was approximately 12-fold greater in male B6C3F1 mice than in male F344 rats. They accounted for 7.8 and 4.6% of the total adducts to renal protein in rats and mice, respectively. Acid-labile adducts formed from 1000 mg/kg TRI were approximately two times greater in mice than rats. In this case, they accounted for 1.4 and 3.3% of the total adduct formed in renal proteins from TRI (corrected for metabolic incorporation), respectively. This greater dilution of adducts associated with DCVC in renal proteins of the rat suggests that covalent binding of TRI has less specificity for the DCVC pathway in rats than in mice.
Covalent binding of reactive intermediates formed by renal beta-lyase activation of S-(1,2-dichlorovinyl)-L-cysteine (DCVC) has been suggested to be responsible for the greater renal sensitivity of rats than mice to the carcinogenic effects of chronic treatment with trichloroethene (TRI). Previous work demonstrated that the activation of DCVC results in acid-labile adducts to protein that can be distinguished from adducts formed by other pathways of TRI metabolism. By analyzing acid-labile adduct formation, the relationship between DCVC formation and activation from TRI and increases in rates of cell division in the kidneys of male F344 rats and B6C3F1 mice could be investigated. The delivered dose of DCVC from an oral dose of 1000 mg/kg TRI was approximately six times greater in rats than mice. However, renal activation of DCVC in mice was approximately 12 times greater than in rats. Therefore, the overall activation of TRI was about two times greater in mice than rats. Induction of cell replication in liver and kidney following doses of 1, 5, or 25 mg/kg DCVC or 1000 mg/kg TRI was also measured through the use of miniosmotic pumps that delivered BrdU subcutaneously for 3 d. Acid-labile adduct formation from DCVC and TRI displayed a consistent relationship with increased cell replication in mice and between mice and rats. Both cell replication and acid-labile adduct formation in rats given 25 mg/kg DCVC were approximately equal to that observed in mice given 1 mg/kg. Increased cell replication was not observed in rats receiving 1 or 5 mg/kg DCVC or 1000 mg/kg TRI, nor were there histological signs of nephrotoxicity. Thus, net activation of TRI by the cysteine S-conjugate pathway was found to be greater in mice than rats and these findings appeared related to differences in cell proliferative responses of the kidneys of the two species. Based on these data, it would appear that other factors must contribute to the greater sensitivity of the rat to the induction of renal carcinogenesis by TRI.
Emixustat potently inhibits the visual cycle isomerase retinal pigment epithelium protein 65 (RPE65) to reduce the accumulation of toxic bisretinoid by-products that lead to various retinopathies. Orally administered emixustat is cleared rapidly from the plasma, with little excreted unchanged. The hydroxypropylamine moiety that is critical in emixustat's inhibition of RPE65 is oxidatively deaminated to three major carboxylic acid metabolites that appear rapidly in plasma. These metabolites greatly exceed the plasma concentrations of emixustat and demonstrate formation-rate-limited metabolite kinetics. This study investigated in vitro deamination of emixustat in human vascular membrane fractions, plasma, and recombinant human vascular adhesion protein-1 (VAP-1), demonstrating single-enzyme kinetics for the formation of a stable aldehyde intermediate in all in vitro systems. The in vitro systems used herein established sequential formation of the major metabolites with addition of assay components for aldehyde dehydrogenase and cytochrome P450. Reaction phenotyping experiments using selective chemical inhibitors and recombinant enzymes of monoamine oxidase, VAP-1, and lysyl oxidase showed that only VAP-1 deaminated emixustat. In individually derived human vascular membranes from umbilical cord and aorta, rates of emixustat deamination were highly correlated to VAP-1 marker substrate activity (benzylamine) and VAP-1 levels measured by enzyme-linked immunosorbent assay. In donormatched plasma samples, soluble VAP-1 activity and levels were lower than in aorta membranes. A variety of potential comedications did not strongly inhibit emixustat deamination in vitro. This work was supported by Acucela Inc., and has not been previously presented. https://doi.org/10.1124/dmd.118.085811. s This article has supplemental material available at dmd.aspetjournals.org. human MAO; rhVAP-1, recombinant human VAP-1; RPE65, retinal pigment epithelium protein 65; SSAO, semicarbazide-sensitive amine oxidase; VAP-1, vascular adhesion protein-1. 504
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.