A point-projection soft X-ray Opacity Spectrometer (OpSpec) has been implemented to measure X-ray spectra from ∼1 to 2 keV on the National Ignition Facility (NIF). Measurement of such soft X-rays with open-aperture point-projection detectors is challenging because only very thin filters may be used to shield the detector from the hostile environment. OpSpec diffracts X-rays from 540 to 2100 eV off a potassium (or rubidium) acid phthalate (KAP or RbAP) crystal onto either image plates or, most recently, X-ray films. A “sacrificial front filter” strategy is used to prevent crystal damage, while 2 or 3 rear filters protect the data. Since May 2017, OpSpec has been recording X-ray transmission data for iron-magnesium plasmas on the NIF, at “Anchor 1” plasma conditions (temperature ∼150 eV, density ∼7 × 1021 e−/cm3). Upgrades improved OpSpec’s performance on 6 NIF shots in August and December 2017, with reduced backgrounds and 100% data return using filter stacks as thin as 2.9 μm (total). Photometric noise is beginning to meet requirements, and further work will reduce systematic errors.
Discrepancies exist between theoretical and experimental opacity data for iron, at temperatures 180-195 eV and electron densities near 3 × 10 22 /cm 3 , relevant to the solar radiative-convective boundary. Another discrepancy, between theory and helioseismic measurements of the boundary's location, would be ameliorated if the experimental opacity is correct. To address these issues, this paper details the first results from new experiments under development at the National Ignition Facility (NIF), using a different method to replicate the prior experimental conditions. In the NIF experiments, 64 laser beams indirectly heat a plastic-tamped rectangular iron-magnesium sample inside a gold cavity. Another 64 beams implode a spherical plastic shell to produce a continuum X-ray flash which backlights the hot sample. An X-ray spectrometer records the transmitted X-rays, the unattenuated X-rays passing around the sample, and the sample's self-emission. From these data, X-ray transmission spectra are inferred, showing Mg K-shell and Fe L-shell X-ray transitions from plasma at a temperature of~150 eV and electron density of~8 × 10 21 /cm 3 . These conditions are similar to prior Z measurements which agree better with theory. The NIF transmission data show statistical uncertainties of 2-10%, but various systematic uncertainties must be addressed before pursuing quantitative comparisons. The paths to reduction of the largest uncertainties are discussed. Once the uncertainty is reduced, future NIF experiments will probe higher temperatures (170-200 eV) to address the ongoing disagreement between theory and Z data.
When compared with the National Ignition Facility’s (NIF) original soft x-ray opacity spectrometer, which used a convex cylindrical design, an elliptically shaped design has helped to increase the signal-to-noise ratio and eliminated nearly all reflections from alternate crystal planes. The success of the elliptical geometry in the opacity experiments has driven a new elliptical geometry crystal with a spectral range covering 520–1100 eV. When coupled with the primary elliptical geometry, which spans 1000–2100 eV, the new sub-keV elliptical geometry helps to cover the full iron L-shell and major oxygen transitions important to solar opacity experimentation. The new design has been built and tested by using a Henke x-ray source and shows the desired spectral coverage. Additional plans are underway to expand these opacity measurements into a mode of time-resolved detection, ∼1 ns gated, but considerations for the detector size and photometrics mean a crystal geometry redesign. The new low-energy geometry, including preliminary results from the NIF opacity experiments, is presented along with the expansion plans into a time-resolved platform.
X-ray films remain a key asset for high-resolution x-ray spectral imaging in high-energy-density experiments conducted at the National Ignition Facility (NIF). The soft x-ray Opacity Spectrometer (OpSpec) fielded at the NIF has an elliptically shaped crystal design that measures x rays in the 900–2100 eV range and currently uses an image plate as the detecting medium. However, Agfa D4 and D3sc x-ray films’ higher spatial resolution provides increased spectral resolution to the data over the IP-TR image plates, driving the desire for regular use of x-ray film as a detecting medium. The calibration of Agfa D4 x-ray film for use in the OpSpec is communicated here. These calibration efforts are vital to the accuracy of the NIF opacity measurements and are conducted in a previously un-studied x-ray energy range under a new film development protocol required by NIF. The absolute response of Agfa D4 x-ray film from 705 to 4620 eV has been measured using the Nevada National Security Site Manson x-ray source. A broader range of energies was selected to compare results with previously published data. The measurements were taken using selected anodes, filters, and applied voltages to produce well-defined energy lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.