The effect of temperature on a pH-responsive amphiphilic diblock copolymer, namely poly(2-(methacryloyloxy)ethyl phosphorylcholine)–poly(2-(diisopropylamino)ethyl methacrylate) (PMPC–PDPA), has been studied using dynamic light scattering (DLS), transmission electron microscopy (TEM), and potentiometry. The dissociation constant (pK a) for the conjugate acid form of the PDPA block was determined for four PMPC–PDPA copolymers with varying volume fractions of DPA over a wide range of temperatures. The pH-modulated amphiphilic character of PMPC–PDPA drives its self-assembly in aqueous solution. Both the solution temperature and PDPA degree of polymerization have a dramatic effect on the size and morphology of the various copolymer nanostructures formed between pH 5 and pH 7.5, as judged by DLS and TEM studies. Copolymer morphologies include spherical micelles, vesicles (also known as “polymersomes”), and high genus assemblies. Interestingly, polymersomes were formed by each of the four diblock copolymers. Perhaps more surprisingly, polymersomes were obtained at 5 °C for the shortest DPA block length and at 50 °C for the longest DPA block length. Potentiometric titrations confirmed that the pK a of the PDPA block had a strong temperature dependence, with a maximum value of 7.60 at 5 °C and of a minimum value of 5.75 at 50 °C. However, no difference in pK a was observed across the four copolymers, suggesting no dependence on the mean degree of polymerization.
Diblock copolymer vesicles are tagged with pH-responsive Nile Blue-based labels and used as a new type of pH-responsive colorimetric/fluorescent biosensor for far-red and near-infrared imaging of live cells. The diblock copolymer vesicles described herein are based on poly(2-(methacryloyloxy)ethyl phosphorylcholine-block-2-(diisopropylamino)ethyl methacrylate) [PMPC-PDPA]: the biomimetic PMPC block is known to facilitate rapid cell uptake for a wide range of cell lines, while the PDPA block constitutes the pH-responsive component that enables facile vesicle self-assembly in aqueous solution. These biocompatible vesicles can be utilized to detect interstitial hypoxic/acidic regions in a tumor model via a pH-dependent colorimetric shift. In addition, they are also useful for selective intracellular staining of lysosomes and early endosomes via subtle changes in fluorescence emission. Such nanoparticles combine efficient cellular uptake with a pH-responsive Nile Blue dye label to produce a highly versatile dual capability probe. This is in marked contrast to small molecule dyes, which are usually poorly uptaken by cells, frequently exhibit cytotoxicity, and are characterized by intracellular distributions invariably dictated by their hydrophilic/hydrophobic balance.
SummaryPolymersomes are vesicles formed by the self-assembly of amphiphilic copolymers in water. They represent one of the most promising alternatives of natural vesicles as they add new possibilities in the amphiphiles' molecular engineering of aqueous compartments. Here we report the design of polymersomes using a bottom-up approach wherein self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)-poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We report evolution from disk micelles, to vesicles, to high-genus vesicles (vesicles with many holes), where each passage is controlled by pH switch or temperature. We show that the process can be rationalized, adapting membrane physics theories to disclose scaling principles that allow the estimation of minimal radius of vesiculation as well as chain entanglement and coupling. This approach allows us to generate nanoscale vesicles with genus from 0 to 70, which have been very elusive and difficult to control so far.
The term polymersome, which refers to a fully synthetic polymeric vesicle, became commonplace around the turn of the millennium. Since then these highly intriguing structures have been at the center of multi-disciplinary research, bridging the fields of nanotechnology, chemistry, physics, biology, medicine and imaging and, more recently, pioneering the field of synthetic biology. As structures they offer greater control into understanding the relationship between amphiphile properties and membrane curvature. Moreover, as delivery vectors for therapeutic and diagnostic compounds they enable greater efficiency of current therapies and targeted delivery. With the rising costs of both healthcare and drug development, polymersomes and nanomedicine are well placed to combat these modern-day problems. This chapter provides an overview of the approaches to prepare and to characterize polymersomes as well as their applications in biomedicine, highlighting recent achievements in the stimuli-responsive drug delivery field.
<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.