Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder.
Embryonic stem (ES) cells represent a potentially useful cell source for tissue regeneration. Previously, using factors known to enhance differentiation and mineralization of primary osteoblasts, we were able to generate cell populations enriched with osteoblasts from a murine ES cell source. Dexamethasone was a potent inducer of osteoblast differentiation and the timing of stimulation markedly increased the proportion of osteoblast lineage cells. This study examined whether inorganic stimuli derived from bioactive glasses could affect the differentiation of osteoblasts in an ES-cell based system. Previous work has demonstrated the ability of soluble ions released from bioactive glasses undergoing dissolution in vitro to stimulate gene expression characteristic of a mature phenotype in primary osteoblasts. We report here on the potential of soluble extracts prepared from 58S sol-gel bioactive glass to further enhance lineage-specific differentiation in murine ES cells. Differentiation of ES cells into osteogenic cells was characterized by the formation of multilayered, mineralized nodules. These nodules contained cells expressing the transcription factor runx2/cbfa-1, and deposition of osteocalcin in the extracellular matrix was detected by immunostaining. When differentiating cells were placed in an osteoblast maintenance medium supplemented with soluble extracts prepared from bioactive glass powders, we observed increased formation of mineralized nodules (98 +/- 6%, mean +/- SEM) and alkaline phosphatase activity (56 +/- 14%, mean +/- SEM) in a pattern characteristic of osteoblast differentiation. This effect of the glass extracts exhibited dose dependency, with alkaline phosphatase activity and nodule formation increasing with extract concentrations. Compared with medium supplemented with dexamethasone, which had previously been used to enhance osteoblast lineage derivation, the glass extracts were as effective at inducing formation of mineralized nodules by murine ES cells. When glass extracts were used in combination with dexamethasone, a further increase in the number of nodules was observed (110 +/- 16%; cf. 83 +/- 7% for dexamethasone alone). This study demonstrates the capacity of an entirely inorganic material to stimulate differentiation of ES cells toward a lineage with therapeutic potential in tissue-engineering applications.
ObjectiveTo examine the effect of therapeutic hypothermia on MR biomarkers and neurodevelopmental outcomes in babies with mild hypoxic-ischaemic encephalopathy (HIE).DesignNon-randomised cohort study.SettingEight tertiary neonatal units in the UK and the USA.Patients47 babies with mild HIE on NICHD neurological examination performed within 6 hours after birth.InterventionsWhole-body cooling for 72 hours (n=32) or usual care (n=15; of these 5 were cooled for <12 hours).Main outcome measuresMRI and MR spectroscopy (MRS) within 2 weeks after birth, and a neurodevelopmental outcome assessment at 2 years.ResultsThe baseline characteristics in both groups were similar except for lower 10 min Apgar scores (p=0.02) in the cooled babies. Despite this, the mean (SD) thalamic NAA/Cr (1.4 (0.1) vs 1.6 (0.2); p<0.001) and NAA/Cho (0.67 (0.08) vs 0.89 (0.11); p<0.001) ratios from MRS were significantly higher in the cooled group. Cooled babies had lower white matter injury scores than non-cooled babies (p=0.02). Four (27%) non-cooled babies with mild HIE developed seizures after 6 hours of age, while none of the cooled babies developed seizures (p=0.008). Neurodevelopmental outcomes at 2 years were available in 40 (85%) of the babies. Adverse outcomes were seen in 2 (14.3%) non-cooled babies, and none of the cooled babies (p=0.09).ConclusionsTherapeutic hypothermia may have a neuroprotective effect in babies with mild HIE, as demonstrated by improved MRS biomarkers and reduced white matter injury on MRI. This may warrant further evaluation in adequately powered randomised controlled trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.