Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.
1. Large declines in reef fish populations in Hawai'i have raised concerns about the sustainability of these resources, and the ecosystem as a whole. To help elucidate the reasons behind these declines, a comprehensive examination of reef fish assemblages was conducted across the entire 2500 km Hawaiian Archipelago.2. Twenty-five datasets were compiled, representing >25 000 individual surveys conducted throughout Hawai'i since 2000. To account for overall differences in survey methods, conversion factors were created to standardize among methods.3. Comparisons of major targeted resource species (N = 35) between the densely populated main (MHI) and remote north-western Hawaiian Islands (NWHI) revealed that 40% of these species had biomass in the MHI below 25% of NWHI levels. In total, 54% of the species examined had biomass <50% of NWHI biomass. 4. The moku or district was a basic unit of resource management in pre-contact Hawai'i and was used as a unit of spatial stratification for comparisons within the MHI. Biomass of resource species was negatively correlated with human population density within moku boundaries, with extremely low biomass in areas with highest human population densities. No such relationship was found for species not targeted by fishing. 5. A number of remote areas with small human populations in the MHI still support high standing stock of fished species, and these areas are likely important refugia for maintaining fisheries production and biodiversity functioning.6. These results highlight the large gradient of human impacts on fish assemblages across the Hawaiian Archipelago and the potential in using landscape and seascape units, such as those that are watershed and bio-physically-based, when managing in part based on a framework of traditional ecological knowledge.
In response to concerns about declining coral cover and recurring macroalgal blooms, in 2009 the State of Hawaii established the Kahekili Herbivore Fisheries Management Area (KHFMA). Within the KHFMA, herbivorous fishes and sea urchins are protected, but other fishing is allowed. As part of a multi-agency monitoring effort, we conducted surveys at KHFMA and comparison sites around Maui starting 19 months before closure, and over the six years since implementation of herbivore protection. Mean parrotfish and surgeonfish biomass both increased within the KHFMA (by 139% [95%QR (quantile range): 98–181%] and 28% [95%QR: 3–52%] respectively). Most of those gains were of small-to-medium sized species, whereas large-bodied species have not recovered, likely due to low levels of poaching on what are preferred fishery targets in Hawaii. Nevertheless, coincident with greater biomass of herbivores within the KHFMA, cover of crustose coralline algae (CCA) has increased from ~2% before closure to ~ 15% in 2015, and macroalgal cover has remained low throughout the monitoring period. Strong evidence that changes in the KHFMA were a consequence of herbivore management are that (i) there were no changes in biomass of unprotected fish families within the KHFMA; and that (ii) there were no similar changes in parrotfish or CCA at comparison sites around Maui. It is not yet clear how effective herbivore protection might eventually be for the KHFMA’s ultimate goal of coral recovery. Coral cover declined over the first few years of surveys–from 39.6% (SE 1.4%) in 2008, to 32.9% (SE 0.8%) in 2012, with almost all of that loss occurring by 2010 (1 year after closure), i.e. before meaningful herbivore recovery had occurred. Coral cover subsequently stabilized and may have slightly increased from 2012 through early 2015. However, a region-wide bleaching event in 2015 had already led to some coral mortality by the time surveys were conducted in late 2015, at which time cover had dropped back to levels recorded in the KHFMA in 2012.
The relative rates of carbon fixed by primary producers vs. consumption by primary consumers shape the community of organisms in ecosystems. On coral reefs, it is important to understand the demography of algae, given known competitive dynamics with reef‐building corals. Numerous studies have shown that fleshy algal abundance is enhanced in the absence of top‐down control by herbivores on coral reefs. However, fewer studies have quantified and compared rates of production by the benthic fleshy algal community and consumption by herbivores. Here, we estimate a budget for fleshy algal growth and herbivorous fish consumption on a Hawaiian coral reef based upon integration of field‐measured and taxonomically specific variables. Data were collected at Kahekili Herbivore Fisheries Management Area, Maui, established in 2009, in which taking of herbivorous fish and urchins is prohibited. Daily algal production was determined by quantifying benthic community composition, standing stock of algal biomass, and growth rates of common algal components. Consumption was determined using distributions of biomass and size classes of herbivorous fish species, consumption rates of herbivores on different algal species, and herbivore bite sizes. Our results show that throughout the first five years of herbivore protection, algal production consistently exceeded the grazing capacity of the herbivorous fish assemblage, but by a diminishing margin since 2010 (consumption 20.8% of production) to the end of the study in 2014 (consumption 67.0% of production). Further, larger size classes of herbivorous fishes in the scraper/excavator herbivore guild contributed more to consumption in later years, which could have additional feedbacks that promote reef‐building taxa. Projecting the budget using data from a neighboring decades‐long protected herbivorous fish assemblage indicated that the production and consumption budget for Kahekili could become balanced in future with continued management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.