The rapid pace of developments in Artificial Intelligence (AI) is providing unprecedented opportunities to enhance the performance of different industries and businesses, including the transport sector. The innovations introduced by AI include highly advanced computational methods that mimic the way the human brain works. The application of AI in the transport field is aimed at overcoming the challenges of an increasing travel demand, CO2 emissions, safety concerns, and environmental degradation. In light of the availability of a huge amount of quantitative and qualitative data and AI in this digital age, addressing these concerns in a more efficient and effective fashion has become more plausible. Examples of AI methods that are finding their way to the transport field include Artificial Neural Networks (ANN), Genetic algorithms (GA), Simulated Annealing (SA), Artificial Immune system (AIS), Ant Colony Optimiser (ACO) and Bee Colony Optimization (BCO) and Fuzzy Logic Model (FLM) The successful application of AI requires a good understanding of the relationships between AI and data on one hand, and transportation system characteristics and variables on the other hand. Moreover, it is promising for transport authorities to determine the way to use these technologies to create a rapid improvement in relieving congestion, making travel time more reliable to their customers and improve the economics and productivity of their vital assets. This paper provides an overview of the AI techniques applied worldwide to address transportation problems mainly in traffic management, traffic safety, public transportation, and urban mobility. The overview concludes by addressing the challenges and limitations of AI applications in transport.
This paper presents the development and evaluation of short-term traffic prediction models using unidirectional and bidirectional deep learning long short-term memory (LSTM) neural networks. The unidirectional LSTM (Uni-LSTM) model provides high performance through its ability to recognize longer sequences of traffic time series data. In this work, Uni-LSTM is extended to bidirectional LSTM (BiLSTM) networks which train the input data twice through forward and backward directions. The paper presents a comparative evaluation of the two models for short-term speed and traffic flow prediction using a common dataset of field observations collected from multiple freeways in Australia. The results showed BiLSTM performed better for variable prediction horizons for both speed and flow. Stacked and mixed Uni-LSTM and BiLSTM models were also investigated for 15-minute prediction horizons resulting in improved accuracy when using 4-layer BiLSTM networks. The optimized 4-layer BiLSTM model was then calibrated and validated for multiple prediction horizons using data from three different freeways. The validation results showed a high degree of prediction accuracy exceeding 90% for speeds up to 60-minute prediction horizons. For flow, the model achieved accuracies above 90% for 5- and 10-minute prediction horizons and more than 80% accuracy for 15- and 30-minute prediction horizons. These findings extend the set of AI models available for road operators and provide them with confidence in applying robust models that have been tested and evaluated on different freeways in Australia.
On-demand shared mobility is increasingly being promoted as an influential strategy to address urban transport challenges in large and fast-growing cities. The appeal of this form of transport is largely attributed to its convenience, ease of use, and affordability made possible through digital platforms and innovations. The convergence of the shared economy with a number of established and emerging technologies—such as artificial intelligence (AI), Internet of Things (IoT), and Cloud and Fog computing—is helping to expedite their deployment as a new form of public transport. Recently, this has manifested itself in the form of Flexible Mobility on Demand (FMoD) solutions, aimed at meeting personal travel demands through flexible routing and scheduling. Increasingly, these shared mobility solutions are blurring the boundaries with existing forms of public transport, particularly bus operations. This paper presents an environmental scan and analysis of the technological, social, and economic impacts surrounding disruptive technology-driven shared mobility trends. Specifically, the paper includes an examination of current and anticipated external factors that are of direct relevance to collaborative and low carbon mobility. The paper also outlines how these trends are likely to influence the mobility industries now and into the future. The paper collates information from a wide body of literature and reports on findings from actual ‘use cases’ that exist today which have used these disruptive mobility solutions to deliver substantial benefits to travellers around the world. Finally, the paper provides stakeholders with insight into identifying and responding to the likely needs and impacts of FMoD and informs their policy and strategy positions on the implementation of smart mobility systems in their cities and jurisdictions.
Long short-term memory (LSTM) models provide high predictive performance through their ability to recognize longer sequences of time series data. More recently, bidirectional deep learning models (BiLSTM) have extended the LSTM capabilities by training the input data twice in forward and backward directions. In this paper, BiLSTM short term traffic forecasting models have been developed and evaluated using data from a calibrated micro-simulation model for a congested freeway in Melbourne, Australia. The simulation model was extensively calibrated and validated to a high degree of accuracy using field data collected from 55 detectors on the freeway. The base year simulation model was then used to generate loop detector data including speed, flow and occupancy which were used to develop and compare a number of LSTM models for short-term traffic prediction up to 60 min into the future. The modelling results showed that BiLSTM outperformed other predictive models for multiple prediction horizons for base year conditions. The simulation model was then adapted for future year scenarios where the traffic demand was increased by 25–100 percent to reflect potential future increases in traffic demands. The results showed superior performance of BiLSTM for multiple prediction horizons for all traffic variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.