The rapid pace of developments in Artificial Intelligence (AI) is providing unprecedented opportunities to enhance the performance of different industries and businesses, including the transport sector. The innovations introduced by AI include highly advanced computational methods that mimic the way the human brain works. The application of AI in the transport field is aimed at overcoming the challenges of an increasing travel demand, CO2 emissions, safety concerns, and environmental degradation. In light of the availability of a huge amount of quantitative and qualitative data and AI in this digital age, addressing these concerns in a more efficient and effective fashion has become more plausible. Examples of AI methods that are finding their way to the transport field include Artificial Neural Networks (ANN), Genetic algorithms (GA), Simulated Annealing (SA), Artificial Immune system (AIS), Ant Colony Optimiser (ACO) and Bee Colony Optimization (BCO) and Fuzzy Logic Model (FLM) The successful application of AI requires a good understanding of the relationships between AI and data on one hand, and transportation system characteristics and variables on the other hand. Moreover, it is promising for transport authorities to determine the way to use these technologies to create a rapid improvement in relieving congestion, making travel time more reliable to their customers and improve the economics and productivity of their vital assets. This paper provides an overview of the AI techniques applied worldwide to address transportation problems mainly in traffic management, traffic safety, public transportation, and urban mobility. The overview concludes by addressing the challenges and limitations of AI applications in transport.
On-demand shared mobility is increasingly being promoted as an influential strategy to address urban transport challenges in large and fast-growing cities. The appeal of this form of transport is largely attributed to its convenience, ease of use, and affordability made possible through digital platforms and innovations. The convergence of the shared economy with a number of established and emerging technologies—such as artificial intelligence (AI), Internet of Things (IoT), and Cloud and Fog computing—is helping to expedite their deployment as a new form of public transport. Recently, this has manifested itself in the form of Flexible Mobility on Demand (FMoD) solutions, aimed at meeting personal travel demands through flexible routing and scheduling. Increasingly, these shared mobility solutions are blurring the boundaries with existing forms of public transport, particularly bus operations. This paper presents an environmental scan and analysis of the technological, social, and economic impacts surrounding disruptive technology-driven shared mobility trends. Specifically, the paper includes an examination of current and anticipated external factors that are of direct relevance to collaborative and low carbon mobility. The paper also outlines how these trends are likely to influence the mobility industries now and into the future. The paper collates information from a wide body of literature and reports on findings from actual ‘use cases’ that exist today which have used these disruptive mobility solutions to deliver substantial benefits to travellers around the world. Finally, the paper provides stakeholders with insight into identifying and responding to the likely needs and impacts of FMoD and informs their policy and strategy positions on the implementation of smart mobility systems in their cities and jurisdictions.
On-demand multi-passenger shared transport options are increasingly being promoted as an influential strategy to reduce traffic congestion and emissions and improve the convenience and travel experience for passengers. These services, often referred to as on-demand public transport, are aimed at meeting personal travel demands through the use of shared vehicles that run on flexible routes using advanced tools for dynamic scheduling. This paper presents an agent-based traffic simulation model that was developed to evaluate the performance of on-demand public transport and compare it with existing scheduled bus services using a case study of the inner city of Melbourne in Australia. The key performance measures used in the comparative evaluation included quality of service and passenger experience in terms of waiting times, the efficiency of service and operations in terms of hourly vehicle utilization, and system efficiency in terms of trip completion rates, passenger kilometers travelled and total passenger trip times. The results showed significant benefits for passengers who use on-demand bus services compared to scheduled bus services. The on-demand bus service was found to reduce average total passenger waiting times by 89% during the Morning Peak; by 78% during the Mid-Day period; by 81% during the Afternoon Peak; and by more than 95% during other periods of the day. From an operator’s perspective, the on-demand services were found to achieve around 70% vehicle utilization rates during peak hours compared to a utilization rate not exceeding 16% for the scheduled bus services. Even during off-peak periods, the occupancies for on-demand services were almost twice the vehicle occupancies for scheduled bus services. In terms of system efficiency, the on-demand services achieved a trip completion rate of 85% compared to a trip completion rate of 67% for the scheduled bus services. The total passenger-kilometers travelled was similar for both scheduled and on-demand bus services, which refutes claims that on-demand bus services induce more kilometers of travel. The trip completion times were around 55% shorter for on-demand bus services compared to scheduled services, which represents a significant saving in travel time for users. Finally, the paper presents average emissions per completed trip for both types of services and shows a significant reduction in emissions for on-demand services compared to conventional bus services. These include, on average, a 48% reduction in CO2 emissions per trip; 82% reduction in NO emissions per trip; and 41% reduction in p.m.10 emissions per trip. These findings clearly demonstrate the superior benefits of on-demand bus services compared to scheduled bus services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.