Diabetes mellitus is one of the most prevalent metabolic disorders that affect people of all genders, ages, and races. Medicinal herbs have gained wide attention from researchers and have been considered to be a beneficial adjuvant agent to oral antidiabetic drugs because of their integrated effects. Concerning the various beneficial effects of Nigella sativa, this systematic review aims to provide comprehensive information on the effects of Nigella sativa on glucose and insulin profile status in humans. A computerized database search performed through Scopus and Medline via Ebscohost with the following set of keywords: Nigella Sativa OR black seed oil OR thymoquinone OR black cumin AND diabetes mellitus OR hyperglycemia OR blood glucose OR hemoglobin A1C had returned 875 relevant articles. A total of seven articles were retrieved for further assessment and underwent data extraction to be included in this review. Nigella sativa was shown to significantly improve laboratory parameters of hyperglycemia and diabetes control after treatment with a significant fall in fasting blood glucose, blood glucose level 2 h postprandial, glycated hemoglobin, and insulin resistance, and a rise in serum insulin. In conclusion, these findings suggested that Nigella sativa could be used as an adjuvant for oral antidiabetic drugs in diabetes control.
Autologous nerve grafts to bridge nerve gaps have donor site morbidity and possible neuroma formation resulting in development of various methods of bridging nerve gaps without using autologous nerve grafts. We have fabricated an acellular muscle stuffed vein seeded with differentiated mesenchymal stem cells (MSCs) as a substitute for nerve autografts. Human vein and muscle were both decellularized by liquid nitrogen immersion with subsequent hydrolysis in hydrochloric acid. Human MSCs were subjected to a series of treatments with a reducing agent, retinoic acid, and a combination of trophic factors. The differentiated MSCs were seeded on the surface of acellular muscle tissue and then stuffed into the vein. Our study showed that 35-75% of the cells expressed neural markers such as S100b, glial fibrillary acidic protein (GFAP), p75 NGF receptor, and Nestin after differentiation. Histological and ultra structural analyses of muscle stuffed veins showed attachment of cells onto the surface of the acellular muscle and penetration of the cells into the hydrolyzed fraction of muscle fibers. We implanted these muscle stuffed veins into athymic mice and at 8 weeks postimplantation, the acellular muscle tissue had fully degraded and replaced with new matrix produced by the seeded cells. The vein was still intact and no inflammatory reactions were observed proving the biocompatibility and biodegradability of the conduit. In conclusion, we have successfully formed a stable living nerve conduit which may serve as a substitute for autologous nerves. ß
Although electrospun poly(methyl methacrylate) (PMMA) may mimic structural features of extracellular matrix, its highly hydrophobic nature causes reduced cell attachment. This study analysed the physicochemical and structural changes of the surface modified PMMA nanofiber. The electrospun PMMA nanofibers (PM) were surface-treated as follows: PM alone, collagen coated-PM (PM-C), UV-irradiated PM (PM-UV), collagen coated UV-irradiated PM (PM-C-UV) and collagen coated-PM crosslinked with genipin (PM-C-GEN). They were subjected to scanning electron microscopy, Fourier transform infrared (FTIR), cell attachment analysis, X-ray photoelectron spectroscopy (XPS), atomic force microscopy and X-ray powder diffraction (XRD). The surface roughness was lower in PM-C-UV group compared to others. Based on FTIR results, all expected functional group were present in all groups. XPS result showed that there are changes in the mass concentration of UV-treated surfaces and in the collagen coated surfaces. All PM groups showed amorphous nature through XRD. UV irradiation and collagen coating were shown to increase PM's functional groups and modify its surface, which contributed to the increased attachment of cells onto the inert PM scaffold. As conclusion, collagen coated UV irradiated PMMA provided a better surface for cell to attach hence are suitable to be used further as scaffold for in vitro model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.