BackgroundCerebral malaria (CM) represents a severe outcome of the Plasmodium falciparum infection. Recent genetic studies have correlated human genes with severe malaria susceptibility, but there is little data on genetic variants that increase the risk of developing specific malaria clinical complications. Nevertheless, susceptibility to experimental CM in the mouse has been linked to host genes including Transforming Growth Factor Beta 2 (TGFB2) and Heme oxygenase-1 (HMOX1). Here, we tested whether those genes were governing the risk of progressing to CM in patients with severe malaria syndromes.Methodology/Principal FindingsWe report that the clinical outcome of P. falciparum infection in a cohort of Angolan children (n = 430) correlated with nine TGFB2 SNPs that modify the risk of progression to CM as compared to other severe forms of malaria. This genetic effect was explained by two haplotypes harboring the CM-associated SNPs (Pcorrec. = 0.035 and 0.036). In addition, one HMOX1 haplotype composed of five CM-associated SNPs increased the risk of developing the CM syndrome (Pcorrec. = 0.002) and was under-transmitted to children with uncomplicated malaria (P = 0.036). Notably, the HMOX1-associated haplotype conferred increased HMOX1 mRNA expression in peripheral blood cells of CM patients (P = 0.012).Conclusions/SignificanceThese results represent the first report on CM genetic risk factors in Angolan children and suggest the novel hypothesis that genetic variants of the TGFB2 and HMOX1 genes may contribute to confer a specific risk of developing the CM syndrome in patients with severe P. falciparum malaria. This work may provide motivation for future studies aiming to replicate our findings in larger populations and to confirm a role for these genes in determining the clinical course of malaria.
SummaryAllele frequencies for 17 STR loci were analyzed in a sample of unrelated males from the Cabo Verde Archipelago. The samples were gathered in such a way that the origin of the subjects was perfectly identified, and they could be included in one of the leeward or windward groups of islands. This study reveals that there are significant differences between both groups of islands, and between Cabo Verdeans and other populations from sub-Sahara Africa including the Guineans, the most probable source population for Cabo Verdeans. This study confirms mtDNA data and, together with HLA and Y chromosome data already published, shows that the Cabo Verde population is substructured and atypical, diverging substantially from mainland sub-Saharan populations. Overall these differences are most probably due to admixture between sub-Saharan slaves brought into the islands and other settlers of European origin. In the absence of a clear indication of a different ethnic composition of the first sub-Saharan settlers of Cabo Verde, the differentiation exhibited in both groups of islands can be most probably be attributed to genetic drift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.