We study the excitation of spin waves in scaled magnetic waveguides using the magnetoelastic effect. In uniformly magnetized systems, normal strains parallel or perpendicular to the magnetization direction do not lead to spin wave excitation since the magnetoelastic torque is zero. Using micromagnetic simulations, we show that the nonuniformity of the magnetization in submicron waveguides due to the effect of the demagnetizing field leads to the excitation of spin waves for oscillating normal strains both parallel and perpendicular to the magnetization. The excitation by biaxial normal in-plane strain was found to be much more efficient than by uniaxial normal out-of-plane strain. For narrow waveguides with widths of 200 nm, the excitation efficiency of biaxial normal in-plane strain was comparable to that of shear strain.
Background: The chemically amplified resist (CAR) has been the workhorse of lithography for the past few decades. During the evolution of projection lithography to extreme ultraviolet lithography (EUVL), a continuous reduction in feature size is observed. Also, a reduction in resist film thickness (FT) is required to prevent large aspect ratios that lead to pattern collapse. A further reduction in resist FT, into an ultrathin film regime (<30 nm resist FT), is expected when advancing to high NA EUVL. This brings along associated challenges with (1) resist critical dimension scanning electron microscope (CDSEM) metrology and (2) resist patterning performance.Aim: Assessment of metrology challenges and patterning limits of a CAR working in this ultrathin film regime. Deconvoluting the metrology and patterning effect on the determination of the unbiased line width roughness (uLWR).Approach: Patterning a CAR at different nominal resist FTs on two different underlayers to quantify the changes in CDSEM image quality and resist patterning performance with the resulting uLWR changes.
Results:The CDSEM image signal-to-noise ratio (SNR) depends on resist FT and the underlayer. The uLWR increases with a reduction in resist FT but scales differently on the two underlayers.Conclusions: A relationship between CDSEM image SNR and uLWR is found. The SNR and uLWR scaling difference on the two underlayers, as well as the uLWR dependency on SNR was determined to be a metrology effect. The general uLWR increase for a reduced resist FT was determined to be a patterning effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.