The peroxidase activity of c-type cytochromes increases substantially by unfolding. This phenomenon was used to study the equilibrium unfolding of ferricytochrome c. The peroxidase activity is already enhanced at low denaturant concentrations. The lowest free energy folding intermediate is easily detected by this method, while it is invisible using fluorescence or optical spectroscopy. The free energy difference between this folding intermediate and the native state depends on the strength of the sixth ligand of the heme-iron and the increase in peroxidase activity upon unfolding is shown to be a sensitive indicator of the strength of this ligand. Under fully denaturing conditions, the peroxidase activity is inhibited by protein-based ligands. It is shown that at least three different ligand groups can be responsible for this inhibition, and that at neutral or alkaline pH, the predominant ligand is not histidine. The use of peroxidase activity assays as a method to study the unfolding of cytochrome c is evaluated.
Next to their natural electron transport capacities, c-type cytochromes possess low peroxidase and cytochrome P-450 activities in the presence of hydrogen peroxide. These catalytic properties, in combination with their structural robustness and covalently bound cofactor make cytochromes c potentially useful peroxidase mimics. This study reports on the peroxidase activity of cytochrome c-550 from Paracoccus versutus and the loss of this activity in presence of H 2 O 2 . The rate-determining step in the peroxidase reaction of cytochrome c-550 is the formation of a reactive intermediate, following binding of peroxide to the haem iron. The reaction rate is very low compared to horseradish peroxidase (approximately one millionth), because of the poor accessibility of the haem iron for H 2 O 2 , and the lack of a base catalyst such as the distal His of the peroxidases. This is corroborated by the linear dependence of the reaction rate on the peroxide concentration up to at least 1 m H 2 O 2 . Steady-state conversion of a reducing substrate, guaiacol, is preceded by an activation phase, which is ascribed to the build-up of amino-acid radicals on the protein. The inactivation kinetics in the absence of reducing substrate are mono-exponential and shown to be concurrent with haem degradation up to 25 mm H 2 O 2 (pH 8.0). At still higher peroxide concentrations, inactivation kinetics are biphasic, as a result of a remarkable protective effect of H 2 O 2 , involving the formation of superoxide and ferrocytochrome c-550.Keywords: cytochrome c; peroxidase; protein radicals; haem; oxidation.Peroxidases are haem containing enzymes that efficiently catalyse substrate oxidations using hydrogen peroxide [1,2]. Peroxidases can function as catalysts in a variety of oxidation reactions on a broad spectrum of substrates and their potential use is therefore considerable. This is more so because they utilize the`clean' oxidant H 2 O 2 [2]. Unfortunately, peroxidases are prone to inactivation during normal turnover. This inherent instability is poorly understood and it is important to investigate the mechanism of inactivation because it is currently the main restriction to commercial application of peroxidases and peroxidase mimics [2±4].Peroxidase activity is inherent to many haem-proteins besides peroxidases. It has been detected in, e.g. haemoglobins and myoglobins, cytochrome c and microperoxidases [5±10]. The latter are small peptides derived from extensive proteolysis of cytochrome c, which have contained a covalently bound haem moiety [8,11]. In some cases protein modification has resulted in enhanced activity [12±14]. Understanding the peroxidase properties of c-type cytochromes is particularly interesting, because these are very stable proteins that remain highly soluble even under conditions of extreme heat, acidity and basicity. Importantly, the covalent linkage, via thioether bonds, of their haem prosthetic group to the protein matrix prevents dissociation of the catalytic moiety from the protein. These properties render cyto...
The paramagnetic 1H NMR spectra of the Co(II) and Ni(II) substituted forms of the type 1 blue copper protein (cupredoxin) amicyanin have been assigned. This is the first such analysis of a cupredoxin, which has a distorted tetrahedral active site with the ligands provided by two histidines, a cysteine and a methionine. The isotropic shifts of the resonances in these spectra are compared with those of Co(II) and Ni(II) azurin. A number of interesting similarities and differences are found. The coordination of the metal by the two equatorial histidine ligands is very similar in both proteins. The interaction between the introduced metal and the thiolate sulfur of the equatorial cysteine ligand is enhanced in the amicyanin derivatives. Resonances belonging to the weak axial methionine ligand exhibit much larger shifts in the amicyanin derivatives, indicative of shorter M(II)-S(Met) distances. The presence of shorter axial M(II)-S(Met) and equatorial M(II)-S(Cys) distances in both Co(II) and Ni(II) amicyanin is ascribed to the absence of a second axially interacting amino acid at the active site of this cupredoxin.
The axial copper ligand methionine has been replaced by a glutamine in the cupredoxin amicyanin from Paracoccus versutus. Dynamic and structural characteristics of the mutant have been studied in detail using UV/Vis, EPR, NMR, cyclic voltammetry, and isomorphous metal replacement. M99Q amicyanin is a blue copper protein with significant spectral and structural similarities to the other cupredoxins umecyanin, stellacyanin, and M121Q azurin. In addition, the functional properties of M99Q amicyanin, as reflected in the electron self-exchange rate constant and midpoint potential (165 mV), have been assessed and compared to values for M121Q azurin. For the latter protein, the published midpoint potential was corrected to the much lower value of 147 mV at pH 7, I = 0.1 M. These values are very similar to the midpoint potential of stellacyanin, which naturally possesses an axial glutamine ligand and has the lowest reduction potential for a naturally occurring cupredoxin. A remarkable feature of M99Q amicyanin, in the reduced state, is the relatively high pK(a) value of 7.1 for its His96 ligand.
Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.