Graphene-based nanomaterials have shown great promise not only in nanoelectronics due to ultrahigh electron mobility but also as biocatalytic scaffolds owing to irreversible protein surface adsorption and facilitating direct electron transfer. In this work, we synthesized stable dispersions of graphene using liquid-phase exfoliation approach based on non-covalent interactions between graphene and 1-pyrenesulfonic acid sodium salt (Pyâ1SO3), 1-pyrenemethylamine salt (Py â Me-NH2) and PluronicÂź P-123 surfactant using only water as solvent compatible with biomolecules. The resulting graphene nanoplatelets (Gr_LPE) are characterized by a combination of analytical (microscopy and spectroscopy) techniques revealing mono- to few-layer graphene displaying that the exfoliation efficiency strongly depends upon the type of pyrene-based salts and organic surfactants. Moreover being completely water-based approach, we build robust nanoscaffolds of graphene-family nanomaterials (GFNs) namely, monolayer graphene, Gr_LPE (the one prepared with PluronicÂź P-123), graphene oxide (GO) and its reduced form (rGO) on glassy carbon electrode surface with three important metalloproteins include cytochrome c (Cyt c) [for electron transfer], myoglobin (Mb) [for oxygen storage] and horseradish peroxidase (HRP) [for catalyzing the biochemical reaction]. In order to demonstrate the nanobiocatalytical activity of these proteins, we used electrochemical interfacial direct electron transfer (DET) kinetics and attempt to determine the rate constant (kET) using two different analytical approaches namely, linear sweep voltammetry and Lavironâs theory. We elucidated that all of the metalloproteins retain their structural integrity (secondary structure) upon forming mixtures with GFNs confirmed through optical and vibrational spectroscopy and biological activity using electrochemistry. Among the GFNs studied, Gr-LPE, GO and rGO support the efficient electrical wiring of the redox centers (with an increase in catalytic efficiency of Cyt c and Mb in the presence of GFNs attributed partially to the surface functional (carboxyl, epoxide and hydroxyl) groups on GO and rGO facilitating rapid charge transfer.