A host of observations demonstrating the relationship between nuclear architecture and processes such as gene expression have led to a number of new technologies for interrogating chromosome positioning. Whereas some of these technologies reconstruct intermolecular interactions, others have enhanced our ability to visualize chromosomes in situ. Here, we describe an oligonucleotide-and PCR-based strategy for fluorescence in situ hybridization (FISH) and a bioinformatic platform that enables this technology to be extended to any organism whose genome has been sequenced. The oligonucleotide probes are renewable, highly efficient, and able to robustly label chromosomes in cell culture, fixed tissues, and metaphase spreads. Our method gives researchers precise control over the sequences they target and allows for single and multicolor imaging of regions ranging from tens of kilobases to megabases with the same basic protocol. We anticipate this technology will lead to an enhanced ability to visualize interphase and metaphase chromosomes.T he role of chromosome positioning in gene regulation and chromosome stability is fueling a growing interest in technologies that reveal the in situ organization of the genome. Among these technologies are chromosome conformation capture (3C) (1) and its several iterations, such as Hi-C (2), which are applied to populations of nuclei to identify chromosomal regions that are in close proximity to each other (3, 4). Another technology is fluorescence in situ hybridization (FISH), wherein nucleic acids are targeted by fluorescently labeled probes and then visualized via microscopy; this technology is an extension of methods that once used radioactive probes and autoradiography but have since been adapted to use nonradioactive labels (5-11). FISH is a single-cell assay, making it especially powerful for the detection of rare events that might otherwise be lost in mixed or asynchronous populations of cells. In addition, because FISH is applied to fixed cells, it can reveal the positioning of chromosomes relative to nuclear, cytoplasmic, and even tissue structures. FISH can also be used to visualize RNA, permitting the simultaneous assessment of gene expression, chromosome position, and protein localization.FISH probes are typically derived from cloned genomic regions or flow-sorted chromosomes, which are labeled directly via nick translation or PCR in the presence of fluorophore-conjugated nucleotides or labeled indirectly with nucleotide-conjugated haptens, such as biotin and digoxigenin, and then visualized with secondary detection reagents. Probe DNA is often fragmented into ∼150-to 250-bp pieces to facilitate its penetration into fixed cells (12) and, as many genomic clones contain repetitive sequences that occur abundantly in the genome, hybridization is typically performed in the presence of unlabeled repetitive DNA (13). Another limitation to clone-based probes is that the genomic regions that can be visualized with them are restricted by the availability of clones and the size of ...
Fluorescence in situ hybridization (FISH) is a powerful single-cell technique for studying nuclear structure and organization. Here, we report two advances in FISH-based imaging. We first describe the in situ visualization of single-copy regions of the genome using two single-molecule super-resolution methodologies. We then introduce a robust and reliable system that harnesses single nucleotide polymorphisms (SNPs) to visually distinguish the maternal and paternal homologous chromosomes in mammalian and insect systems. Both of these new technologies are enabled by renewable, bioinformatically-designed, oligonucleotide-based Oligopaint probes, which we augment with a strategy that uses secondary oligonucleotides (oligos) to produce and enhance fluorescent signals. These advances should substantially expand the capability to query parent-of-origin specific chromosome positioning and gene expression on a cell-by-cell basis.
Chromosome organization is crucial for genome function. Here, we present a method for visualizing chromosomal DNA at super-resolution and then integrating Hi-C data to produce three-dimensional models of chromosome organization. Using the super-resolution microscopy methods of OligoSTORM and OligoDNA-PAINT, we trace 8 megabases of human chromosome 19, visualizing structures ranging in size from a few kilobases to over a megabase. Focusing on chromosomal regions that contribute to compartments, we discover distinct structures that, in spite of considerable variability, can predict whether such regions correspond to active (A-type) or inactive (B-type) compartments. Imaging through the depths of entire nuclei, we capture pairs of homologous regions in diploid cells, obtaining evidence that maternal and paternal homologous regions can be differentially organized. Finally, using restraint-based modeling to integrate imaging and Hi-C data, we implement a method–integrative modeling of genomic regions (IMGR)–to increase the genomic resolution of our traces to 10 kb.
In order to gain insight into the evolution of the genetic control of the development of cranial neurogenic placodes and cranial sensory ganglia in vertebrates, we cloned and analysed the spatiotemporal expression pattern of six transcription factor genes in a chondrichthyan, the shark Scyliorhinus canicula (lesser-spotted dogfish/catshark). As in other vertebrates, NeuroD is expressed in all cranial sensory ganglia. We show that Pax3 is expressed in the profundal placode and ganglion, strongly supporting homology between the separate profundal ganglion of elasmobranchs and basal actinopterygians and the ophthalmic trigeminal placode-derived neurons of the fused amniote trigeminal ganglion. We show that Pax2 is a conserved pan-gnathostome marker for epibranchial and otic placodes, and confirm that Phox2b is a conserved pan-gnathostome marker for epibranchial placode-derived neurons. We identify Eya4 as a novel marker for the lateral line system throughout its development, expressed in lateral line placodes, sensory ridges and migrating primordia, neuromasts and electroreceptors. We also identify Tbx3 as a specific marker for lateral line ganglia in shark embryos. We use the spatiotemporal expression pattern of these genes to characterise the development of neurogenic placodes and cranial sensory ganglia in the dogfish, with a focus on the epibranchial and lateral line placodes. Our findings demonstrate the evolutionary conservation across all gnathostomes of at least some of the transcription factor networks underlying neurogenic placode development.
An unexpectedly large number of human autosomal genes are subject to monoallelic expression (MAE). Our analysis of 4,227 such genes reveals surprisingly high genetic variation across human populations. This increased diversity is unlikely to reflect relaxed purifying selection. Remarkably, MAE genes exhibit elevated recombination rate and increased density of hypermutable sequence contexts. However, these factors do not fully account for the increased diversity. We find that the elevated nucleotide diversity of MAE genes is also associated with greater allelic age: their variants tend to be older and are enriched in polymorphisms shared with Neanderthals and chimpanzees. Both synonymous and nonsynonymous alleles in MAE genes have elevated average population frequencies. We also observed strong enrichment of the MAE signature among genes reported to evolve under balancing selection. We propose that an important biological function of widespread MAE might be generation of cell-to-cell heterogeneity; the increased genetic variation contributes to this heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.