A model of community ambulation after stroke was developed and verified. Recognizing important components of community ambulation may assist physiotherapists in determining community ambulation goals, needs, and opportunities in partnership with clients.
Purpose
Results of patient-reported outcome measures (PROMs) are increasingly used to inform healthcare decision-making. Research has shown that response shift can impact PROM results. As part of an international collaboration, our goal is to provide a framework regarding the implications of response shift at the level of patient care (micro), healthcare institute (meso), and healthcare policy (macro).
Methods
Empirical evidence of response shift that can influence patients’ self-reported health and preferences provided the foundation for development of the framework. Measurement validity theory, hermeneutic philosophy, and micro-, meso-, and macro-level healthcare decision-making informed our theoretical analysis.
Results
At the micro-level, patients’ self-reported health needs to be interpreted via dialogue with the clinician to avoid misinterpretation of PROM data due to response shift. It is also important to consider the potential impact of response shift on study results, when these are used to support decisions. At the meso-level, individual-level data should be examined for response shift before aggregating PROM data for decision-making related to quality improvement, performance monitoring, and accreditation. At the macro-level, critical reflection on the conceptualization of health is required to know whether response shift needs to be controlled for when PROM data are used to inform healthcare coverage.
Conclusion
Given empirical evidence of response shift, there is a critical need for guidelines and knowledge translation to avoid potential misinterpretations of PROM results and consequential biases in decision-making. Our framework with guiding questions provides a structure for developing strategies to address potential impacts of response shift at micro-, meso-, and macro-levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.