Autophagy is an essential cellular process affecting virus infections and other diseases and Beclin1 (BECN1) is one of its key regulators. Here, we identified S-phase kinase-associated protein 2 (SKP2) as E3 ligase that executes lysine-48-linked poly-ubiquitination of BECN1, thus promoting its proteasomal degradation. SKP2 activity is regulated by phosphorylation in a hetero-complex involving FKBP51, PHLPP, AKT1, and BECN1. Genetic or pharmacological inhibition of SKP2 decreases BECN1 ubiquitination, decreases BECN1 degradation and enhances autophagic flux. Middle East respiratory syndrome coronavirus (MERS-CoV) multiplication results in reduced BECN1 levels and blocks the fusion of autophagosomes and lysosomes. Inhibitors of SKP2 not only enhance autophagy but also reduce the replication of MERS-CoV up to 28,000-fold. The SKP2-BECN1 link constitutes a promising target for host-directed antiviral drugs and possibly other autophagy-sensitive conditions.
Macrophages are important target cells for the Human Immunodeficiency Virus Type I (HIV-1) in vivo. Several studies have assessed the molecular biology of the virus in this cell type, and a number of differences towards HIV-1 infection of CD4+ T cells have been described. There is a broad consensus that macrophages resist HIV-1 infection much better than CD4+ T cells. Among other reasons, this is due to the presence of the recently identified host cell restriction factor SamHD1, which is strongly expressed in cells of the myeloid lineage. Furthermore, macrophages produce and release relatively low amounts of infectious HIV-1 and are less sensitive to viral cytotoxicity in comparison to CD4+ T cells. Nevertheless, macrophages play a crucial role in the different phases of HIV-1 infection. In this review, we summarize and discuss the significance of macrophages for HIV-1 transmission, the acute and chronic phases of HIV-1 infection, the development of acquired immunodeficiency syndrome (AIDS) and HIV-associated diseases, including neurocognitive disorders. We propose that interaction of HIV-1 with macrophages is crucial during all stages of HIV-1 infection. Thus, long-term successful treatment of HIV-1 infected individuals requires potent strategies to prevent HIV-1 from entering and persisting in these cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.