This article describes the UK Met Office Global Seasonal forecast system version 5 (GloSea5). GloSea5 upgrades include an increase in horizontal resolution in the atmosphere (N216-0.7 • ) and the ocean (0.25 • ), and implementation of a 3D-Var assimilation system for ocean and sea-ice conditions. GloSea5 shows improved year-to-year predictions of the major modes of variability. In the Tropics, predictions of the El Niño-Southern Oscillation are improved with reduced errors in the West Pacific. In the Extratropics, GloSea5 shows unprecedented levels of forecast skill and reliability for both the North Atlantic Oscillation and the Arctic Oscillation. We also find useful levels of skill for the western North Pacific Subtropical High which largely determines summer precipitation over East Asia.
The Global Coupled 3 (GC3) configuration of the Met Office Unified Model is presented. Among other applications, GC3 is the basis of the United Kingdom's submission to the Coupled Model Intercomparison Project 6 (CMIP6). This paper documents the model components that make up the configuration (although the scientific descriptions of these components are in companion papers) and details the coupling between them. The performance of GC3 is assessed in terms of mean biases and variability in long climate simulations using present‐day forcing. The suitability of the configuration for predictability on shorter time scales (weather and seasonal forecasting) is also briefly discussed. The performance of GC3 is compared against GC2, the previous Met Office coupled model configuration, and against an older configuration (HadGEM2‐AO) which was the submission to CMIP5. In many respects, the performance of GC3 is comparable with GC2, however, there is a notable improvement in the Southern Ocean warm sea surface temperature bias which has been reduced by 75%, and there are improvements in cloud amount and some aspects of tropical variability. Relative to HadGEM2‐AO, many aspects of the present‐day climate are improved in GC3 including tropospheric and stratospheric temperature structure, most aspects of tropical and extratropical variability and top‐of‐atmosphere and surface fluxes. A number of outstanding errors are identified including a residual asymmetric sea surface temperature bias (cool northern hemisphere, warm Southern Ocean), an overly strong global hydrological cycle and insufficient European blocking.
A method is presented for deriving weather patterns objectively over an area of interest, in this case the UK and surrounding European area. A set of 30 and eight patterns are derived through k-means clustering of daily mean sea level pressure (MSLP) data . These patterns have been designed for the purpose of post-processing forecast output from ensemble prediction systems and understanding how forecast models perform under different circulation types. The 30 weather patterns are designed for use in the medium-range and the eight weather patterns are designed for use in the monthly and seasonal timescales, or when there is low forecast confidence in the medium-range. Weather patterns are numbered according to their annual historic occurrences, with lower numbered patterns occurring most often. Lower numbered patterns occur more in summer (with weak MSLP anomalies) and higher numbered patterns occur more in winter (with strong MSLP anomalies). Weather patterns have been applied in a weather forecasting context, whereby ensemble members are assigned to the closest matching pattern definition. This provides a probabilistic insight into which patterns are most likely within the forecast range and summarises key aspects from the large volumes of data which ensembles provide. Verification of European Centre for Medium-Range Weather Forecasts medium-range ensemble forecasts for the set of eight weather patterns shows small forecast biases annually with some large variations seasonally. The most prominent seasonal variation shows the westerly (NAO+) pattern to over-forecast in summer and under-forecast in winter. Forecast skill was found to be better in winter than summer for most patterns.
Abstract. The latest coupled configuration of the Met Office Unified Model (Global Coupled configuration 2, GC2) is presented. This paper documents the model components which make up the configuration (although the scientific description of these components is detailed elsewhere) and provides a description of the coupling between the components. The performance of GC2 in terms of its systematic errors is assessed using a variety of diagnostic techniques. The configuration is intended to be used by the Met Office and collaborating institutes across a range of timescales, with the seasonal forecast system (GloSea5) and climate projection system (HadGEM) being the initial users. In this paper GC2 is compared against the model currently used operationally in those two systems. Overall GC2 is shown to be an improvement on the configurations used currently, particularly in terms of modes of variability (e.g. mid-latitude and tropical cyclone intensities, the Madden–Julian Oscillation and El Niño Southern Oscillation). A number of outstanding errors are identified with the most significant being a considerable warm bias over the Southern Ocean and a dry precipitation bias in the Indian and West African summer monsoons. Research to address these is ongoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.