BackgroundSpecies tree estimation is challenging in the presence of incomplete lineage sorting (ILS), which can make gene trees different from the species tree. Because ILS is expected to occur and the standard concatenation approach can return incorrect trees with high support in the presence of ILS, "coalescent-based" summary methods (which first estimate gene trees and then combine gene trees into a species tree) have been developed that have theoretical guarantees of robustness to arbitrarily high amounts of ILS. Some studies have suggested that summary methods should only be used on "c-genes" (i.e., recombination-free loci) that can be extremely short (sometimes fewer than 100 sites). However, gene trees estimated on short alignments can have high estimation error, and summary methods tend to have high error on short c-genes. To address this problem, Chifman and Kubatko introduced SVDquartets, a new coalescent-based method. SVDquartets takes multi-locus unlinked single-site data, infers the quartet trees for all subsets of four species, and then combines the set of quartet trees into a species tree using a quartet amalgamation heuristic. Yet, the relative accuracy of SVDquartets to leading coalescent-based methods has not been assessed.ResultsWe compared SVDquartets to two leading coalescent-based methods (ASTRAL-2 and NJst), and to concatenation using maximum likelihood. We used a collection of simulated datasets, varying ILS levels, numbers of taxa, and number of sites per locus. Although SVDquartets was sometimes more accurate than ASTRAL-2 and NJst, most often the best results were obtained using ASTRAL-2, even on the shortest gene sequence alignments we explored (with only 10 sites per locus). Finally, concatenation was the most accurate of all methods under low ILS conditions.ConclusionsASTRAL-2 generally had the best accuracy under higher ILS conditions, and concatenation had the best accuracy under the lowest ILS conditions. However, SVDquartets was competitive with the best methods under conditions with low ILS and small numbers of sites per locus. The good performance under many conditions of ASTRAL-2 in comparison to SVDquartets is surprising given the known vulnerability of ASTRAL-2 and similar methods to short gene sequences.
BackgroundSpecies tree estimation is challenged by gene tree heterogeneity resulting from biological processes such as duplication and loss, hybridization, incomplete lineage sorting (ILS), and horizontal gene transfer (HGT). Mathematical theory about reconstructing species trees in the presence of HGT alone or ILS alone suggests that quartet-based species tree methods (known to be statistically consistent under ILS, or under bounded amounts of HGT) might be effective techniques for estimating species trees when both HGT and ILS are present.ResultsWe evaluated several publicly available coalescent-based methods and concatenation under maximum likelihood on simulated datasets with moderate ILS and varying levels of HGT. Our study shows that two quartet-based species tree estimation methods (ASTRAL-2 and weighted Quartets MaxCut) are both highly accurate, even on datasets with high rates of HGT. In contrast, although NJst and concatenation using maximum likelihood are highly accurate under low HGT, they are less robust to high HGT rates.ConclusionOur study shows that quartet-based species-tree estimation methods can be highly accurate under the presence of both HGT and ILS. The study suggests the possibility that some quartet-based methods might be statistically consistent under phylogenomic models of gene tree heterogeneity with both HGT and ILS.
Background: Species tree estimation is challenged by gene tree heterogeneity resulting from biological processes such as duplication and loss, hybridization, incomplete lineage sorting (ILS), and horizontal gene transfer (HGT). Mathematical theory about reconstructing species trees in the presence of HGT alone or ILS alone suggests that quartet-based species tree methods (known to be statistically consistent under ILS, or under bounded amounts of HGT) might be effective techniques for estimating species trees when both HGT and ILS are present. Results: We evaluated several publicly available coalescent-based methods and concatenation under maximum likelihood on simulated datasets with moderate ILS and varying levels of HGT. Our study shows that two quartet-based species tree estimation methods (ASTRAL-2 and weighted Quartets MaxCut) are both highly accurate, even on datasets with high rates of HGT. In contrast, although NJst and concatenation using maximum likelihood are highly accurate under low HGT, they are less robust to high HGT rates.
Abstract. Distance-based phylogenetic algorithms attempt to solve the NP-hard least squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distancebased tree reconstruction algorithms such as UPGMA and Neighbor-Joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones.A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least squares phylogeny, UPGMA, and Neighbor-Joining. Our results suggest that in some circumstances, UPGMA and Neighbor-Joining poorly match least squares phylogeny when the true tree has a polytomy.
Background: Species tree estimation is challenging in the presence of incomplete lineage sorting (ILS), which can make gene trees different from the species tree. Because ILS is expected to occur and the standard concatenation approach can return incorrect trees with high support in the presence of ILS, "coalescent-based" summary methods (which first estimate gene trees and then combine gene trees into a species tree) have been developed that have theoretical guarantees of robustness to arbitrarily high amounts of ILS. Some studies have suggested that summary methods should only be used on "c-genes" (i.e., recombination-free loci) that can be extremely short (sometimes fewer than 100 sites). However, gene trees estimated on short alignments can have high estimation error, and summary methods tend to have high error on short c-genes. To address this problem, Chifman and Kubatko introduced SVDquartets, a new coalescent-based method. SVDquartets takes multi-locus unlinked single-site data, infers the quartet trees for all subsets of four species, and then combines the set of quartet trees into a species tree using a quartet amalgamation heuristic. Yet, the relative accuracy of SVDquartets to leading coalescent-based methods has not been assessed. Results: We compared SVDquartets to two leading coalescent-based methods (ASTRAL-2 and NJst), and to concatenation using maximum likelihood. We used a collection of simulated datasets, varying ILS levels, numbers of taxa, and number of sites per locus. Although SVDquartets was sometimes more accurate than ASTRAL-2 and NJst, most often the best results were obtained using ASTRAL-2, even on the shortest gene sequence alignments we explored (with only 10 sites per locus). Finally, concatenation was the most accurate of all methods under low ILS conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.