The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50 μg nicotine/l), to two mentholated reference cigarettes (MRC) (at 23 μg nicotine/l), or to the 3R4F reference cigarette (at 23 μg nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F.
Tobacco smoke is a complex mixture with over 8700 identified constituents. Smoking causes many diseases including lung cancer, cardiovascular disease, and chronic obstructive pulmonary disease. However, the mechanisms of how cigarette smoke impacts disease initiation or progression are not well understood and individual smoke constituents causing these effects are not generally agreed upon. The studies reported here were part of a series of investigations into the contributions of selected smoke constituents to the biological activity of cigarette smoke. In vitro cytotoxicity measured by the neutral red uptake (NRU) assay and in vitro mutagenicity determined in the Ames bacterial mutagenicity assay (BMA) were selected because these assays are known to produce reproducible, quantitative results for cigarette smoke under standardized exposure conditions. In order to determine the contribution of individual cigarette smoke constituents, a fingerprinting method was developed to semi-quantify the mainstream smoke yields. For cytotoxicity, 90% of gas vapor phase (GVP) cytotoxicity of the Kentucky Reference cigarette 1R4F was explained by 3 aldehydes and 40% of the 1R4F particulate phase cytotoxicity by 10 smoke constituents, e.g., hydroquinone. In the microsuspension version of the BMA, 4 aldehydes accounted for approximately 70% of the GVP mutagenicity. Finally, the benefits of performing such studies along with the difficulties in interpretation in the context of smoking are discussed.
The following series of papers presents an extensive assessment of the Electrically Heated Cigarette Smoking System EHCSS series-K cigarette vs. conventional lit-end cigarettes (CC) as an example for an extended testing strategy for evaluation of reduced exposure. The EHCSS produces smoke through electrical heating of tobacco. The EHCSS series-K heater was designed for exclusive use with EHCSS cigarettes, and cannot be used to smoke (CC). Compared to the University of Kentucky Reference Research cigarette 2R4F and a series of commercial CC, mainstream cigarette smoke of both the non-menthol and menthol-flavored EHCSS cigarettes showed a reduced delivery of a series of selected harmful and potentially harmful constituents (HPHC), mutagenic activity determined using the Salmonella typhimurium Reverse Mutation (Ames) assay, and cytotoxicity in the Neutral Red Uptake Assay. Clinical evaluations confirmed reduced exposure to HPHC and excretion of mutagenic material under controlled clinical conditions. Reductions in HPHC exposure were confirmed in a real-world ambulatory clinical study. Potential biomarkers of cardiovascular risk were also reduced under real-world ambulatory conditions. A modeling approach, 'nicotine bridging', was developed based on the determination of nicotine exposure in clinical evaluations which indicated that exposure to HPHC for which biomarkers of exposure do not exist would also be reduced.
A typical Indonesian kretek cigarette brand and an experimental kretek reference cigarette were compared to the reference cigarette 2R4F in two 90-day inhalation studies. Male and female rats were exposed nose-only to mainstream smoke for 6 hours daily, for 90 consecutive days. Biological endpoints were assessed according to OECD guideline 413, with special emphasis on respiratory tract histopathology and on lung inflammation (broncho-alveolar lavage fluid levels of neutrophils, macrophages and lymphocytes). Histopathological alterations included: in the nose, hyperplasia and squamous metaplasia of the respiratory epithelium and squamous metaplasia and atrophy of the olfactory epithelium; in the larynx, epithelial squamous metaplasia and hyperplasia; in the lungs, accumulation of macrophages in alveoli and goblet cell hyperplasia in bronchial epithelium. The findings were qualitatively consistent with observations from previous similar studies on conventional cigarettes. Compared to 2R4F cigarette, however, kretek smoke exposure was associated with a pronounced attenuation of pulmonary inflammation and less severe histopathological changes in the respiratory tract. Neutrophilic inflammation was also significantly lower (>70%). These results are consistent with the observations made on smoke chemistry and in vitro toxicology. They do not support any increased toxicity of the smoke of kretek cigarettes compared to conventional American-blended cigarettes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.