We consider a new formulation of the stochastic coupled cluster method in terms of the similarity transformed Hamiltonian. We show that improvement in the granularity with which the wavefunction is represented results in a reduction in the critical population required to correctly sample the wavefunction for a range of systems and excitation levels and hence leads to a substantial reduction in the computational cost. This development has the potential to substantially extend the range of the method, enabling it to be used to treat larger systems with excitation levels not easily accessible with conventional deterministic methods.
Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the last decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method exact thermal density matrix, respectively. In this article we describe the HANDE-QMC code, an open-source implementation of FCIQMC, CCMC and DMQMC, including initiator and semi-stochastic adaptations. We describe our code and demonstrate its use on three example systems; a molecule (nitric oxide), a model solid (the uniform electron gas), and a real solid (diamond). An illustrative tutorial is also included.
Coupled cluster theory is a vital cornerstone of electronic structure theory and is being applied to ever-larger systems. Stochastic approaches to quantum chemistry have grown in importance and offer compelling advantages over traditional deterministic algorithms in terms of computational demands, theoretical flexibility or lower scaling with system size. We present a highly parallelizable algorithm of the coupled cluster Monte Carlo method involving sampling of clusters of excitors over multiple time steps. The behaviour of the algorithm is investigated on the uniform electron gas and the water dimer at CCSD, CCSDT and CCSDTQ levels. We also describe two improvements to the original sampling algorithm, full non-composite and multi-spawn sampling. A stochastic approach to coupled cluster results in an efficient and scalable implementation at arbitrary truncation levels in the coupled cluster expansion. arXiv:1807.03749v2 [physics.chem-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.