A long-standing theory posits that central chemoreception, the CNS mechanism for CO(2) detection and regulation of breathing, involves neurons located at the ventral surface of the medulla oblongata (VMS). Using in vivo and in vitro electrophysiological recordings, we identify VMS neurons within the rat retrotrapezoid nucleus (RTN) that have characteristics befitting these elusive chemoreceptors. These glutamatergic neurons are vigorously activated by CO(2) in vivo, whereas serotonergic neurons are not. Their CO(2) sensitivity is unaffected by pharmacological blockade of the respiratory pattern generator and persists without carotid body input. RTN CO(2)-sensitive neurons have extensive dendrites along the VMS and they innervate key pontomedullary respiratory centers. In brainstem slices, a subset of RTN neurons with markedly similar morphology is robustly activated by acidification and CO(2). Their pH sensitivity is intrinsic and involves a background K(+) current. In short, the CO(2)-sensitive neurons of the RTN are good candidates for the long sought-after VMS chemoreceptors.
Deciphering interneuronal circuitry is central to understanding brain functions yet remains as a challenging task in neurobiology. Using simultaneous quadruple-octuple in vitro and dual in vivo whole-cell recordings, we found two previously unknown interneuronal circuits that link cortical layer 1–3 (L1-3) interneurons and L5 pyramidal neurons in the rat neocortex. L1 single-bouquet cells (SBCs) preferentially form unidirectional inhibitory connections on L2/3 interneurons that inhibit the entire dendritic-somato-axonal axis of ~1% of L5 pyramidal neurons located within the same column. In contrast, L1 elongated neurogliaform cells (ENGCs) frequently form mutual inhibitory and electric connections with L2/3 interneurons, and these L1-3 interneurons inhibit the distal apical dendrite of >60% of L5 pyramidal neurons across multiple columns. Functionally, SBC→L2/3 interneuron→L5 pyramidal neuronal circuits disinhibit and ENGC↔L2/3 interneuron→L5 pyramidal neuronal circuits inhibit the initiation of dendritic complex spikes in L5 pyramidal neurons. As dendritic complex spikes can serve coincidence detection, these cortical interneuronal circuits may be essential for salience selection.
The pre-Bötzinger complex (pre-BötC) is a physiologically defined group of ventrolateral medullary neurons that plays a central role in respiratory rhythm generation. These cells are located in a portion of the rostral ventrolateral medulla (RVLM) that is difficult to identify precisely for lack of a specific marker. We sought to determine whether somatostatin (SST) might be a marker for this region. The rat pre-BötC area was defined as a 500-microm-long segment of ventrolateral medulla coextensive with the ventral respiratory group. This region was identified by juxtacellular labeling of neurons with respiratory-related activity and by its location rostral to the phrenic premotor neurons. It contained most of the SST-ir neuronal somata of the RVLM. These cells were small (107 microm(2)) and expressed high levels of preprosomatostatin mRNA. They were strongly neurokinin 1 receptor (NK1R)-ir and were selectively destroyed by saporin conjugated with an NK1R agonist (SSP-SAP). Most SST-ir neurons (>90%) contained vesicular glutamate transporter 2 (VGLUT2) mRNA, and terminals immunoreactive for SST and VGLUT2 protein were found in their midst. Few SST-ir neurons contained GAD-67 mRNA (<1%) or preproenkephalin mRNA (6%). Retrograde labeling experiments demonstrated that over 75% of the SST-ir neurons project to the contralateral pre-BötC area, but none projects to the spinal cord. In conclusion, the RVLM contains many neurons that express preprosomatostatin mRNA. A subgroup of these cells contains high levels of SST and NK1R immunoreactivity in their somata. These glutamatergic interneurons identify a narrow region of the RVLM that appears to be coextensive with the pre-BötC of adult rats.
SummaryThe retrotrapezoid nucleus (RTN) contains non-cholinergic non-catecholaminergic glutamatergic neurons that express the transcription factor Phox2b (chemically coded or "cc" RTN neurons). These cells regulate breathing and may be central chemoreceptors. Here we explore their ultrastructure and their acid-sensitivity using two novel BAC eGFP-Phox2b transgenic mice (B/G, GENSAT JX99) in which respectively 36% and 100% of the cc RTN neurons express the transgene in complete or partial anatomical isolation from other populations of eGFP neurons.All but one eGFP-labeled RTN neuron recorded in these mice were acid-activated in slices. These cells contained VGLUT2 mRNA and 50% contained preprogalanin mRNA (determined by singlecell PCR in the B/G mouse). Two neuronal subgroups were revealed which differed in discharge rate at pH 7.3 (Type I ~2; Type II ~4 Hz) and the degree of alkalization that silenced the cells (Type I: 7.4 -7.6; Type II: 7.8 -8.0). Medial to the RTN, C1 neurons recorded in a tyrosinehydroxylase-GFP mouse were pH-insensitive between pH 6.9 -7.5.Ultrastructural studies demonstrated that eGFP-labeled RTN neurons were surrounded by numerous capillaries and were often in direct contact with glial cells, pericytes and the basement membrane of capillaries. Terminals contacting large proximal eGFP-dendrites formed mainly symmetric, likely inhibitory, synapses. Terminals on more distal eGFP-dendrites formed preferentially asymmetric, presumably excitatory, synapses.In sum, C1 cells are pH-insensitive whereas cc RTN neurons are uniformly acid-sensitive. The RTN neurons receive inhibitory and excitatory synaptic inputs and may have unfettered biochemical interactions with glial cells and the local microvasculature.
Initially recognized for their importance in control of appetite, orexins (also called hypocretins) are neuropeptides that are also involved in regulating sleep, arousal, and cardiovascular function. Loss of orexin appears to be the primary cause of narcolepsy. Cells expressing the orexins are restricted to a discrete region of the hypothalamus, but their terminal projections are widely distributed throughout the brain. With the diversity of function and broad distribution of orexin terminals, it is not known whether the orexin cells constitute a homogeneous population. Because orexins produce neuroexcitatory effects, we hypothesized that orexin-containing neurons are glutamatergic. In the present study we used digoxigenin-labeled cRNA probes for the vesicular glutamate transporters, VGLUT1 and VGLUT2, for in situ hybridization studies in combination with immunohistochemical detection of orexin cell bodies in the hypothalamus. In general, cells in the hypothalamus expressed low levels of the vesicular glutamate transporters relative to other areas of the forebrain, such as the cortex and thalamus. Light labeling for VGLUT2 mRNA was detected in about 50% of the orexin-immunoreactive neurons, and a much smaller percentage (approximately 13%) of orexin-immunoreactive cells was found to express VGLUT1. Despite the fact that intense labeling for GAD67 mRNA was found in a large number of cells throughout the hypothalamus, none of the orexin-immunoreactive cells was found to be GABAergic. These findings, showing that many of the orexin neurons are glutamatergic, are consistent with the neuroexcitatory effects of orexin but suggest that another neurochemical phenotype may define the remaining subset of orexin neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.