The azo dyes Sunset Yellow and Orange II were gavaged to rodent species to check bile, urine, and fecal extracts for possible mutagenic activity in the Ames test or in bone marrow cells for clastogenicity using cytogenetic test systems. After oral application the dyes showed a negative response in bile, excrements, and bone marrow. When an exogenous metabolic activation was performed, increased revertant numbers using Salmonella strain TA100 were obtained only in fecal extracts of Sunset Yellow-treated animals. It is concluded that no genotoxic harm is to be expected from the ingestion of Sunset-Yellow or Orange II.
A high percentage of human tumors is reported to be related to dietary habits. One way to improve the nutritional impact is to increase the intake of protective factors, such as inhibitors of DNA damage and other types of anticarcinogens. Specific strains of lactic acid bacteria used to ferment milk are promising candidates that may be antimutagenic and anticarcinogenic. We have studied the antimutagenicity of 10 isolated strains of beneficial lactic acid bacteria. Four types of fermented milk products were also studied for their protective properties. The effect of these bacteria on the yield of revertants induced by nitrosated beef extract was investigated in the Salmonella typhimurium mutagenicity assay. Eight of 10 isolated Lactobacillus strains reduced the yield of his+ revertants almost back to the levels of the untreated controls. Different fermented fresh yogurts containing viable bacteria (probably Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus or Lactobacillus acidophilus and Bifidobacteria) showed protective effects as well. The degree of suppressing revertants was independent of the yogurt's fat content. In contrast, yogurt products that had been heat treated were not inhibitory. The other fresh fermented milk products (e.g., buttermilk, kefir, and "Dickmilch") were not antimutagenic in this study. The results imply that some bacteria used in milk processing have an antimutagenic potential and that this property is specific for the bacterial strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.