A goodness-of-fit test for left-, right-and interval-censored data, assuming random censorship is proposed and studied. In the first step of the test, the null model is extended to a series of nested alternative models for censored data as in Zhang and Davidian (2008). Then a modified AIC model selection is used to select the best model to describe the data. If a model with one or more extra parameters is selected, then the null hypothesis is rejected. This new goodness-of-fit test procedure is based on the order selection test as described in Aerts, Claeskens and Hart (1999). The applicability of the test is illustrated in the context of microbial agents, and its performance characteristics are demonstrated through simulation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.